
AD-A 124 707 DEVELOPMENT OF AN.INTERACTIVE C ONTROL ENGINEERING 1
COMPUTER ANAL YS IS PACKA.. .1U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB OH SCHOOL OF ENDI.

UNCASFE Cd GMRAROWSKI OFC 82 FG92

~MEOIEhE mIss
mhhhhhMhMhhhhl
MhhhhEMhMhMhEI
MhhhMhMhMhEMhI

Ii

11111a1.2& 1I2

&LI
1u1 ma1 -01

1j 1j.25 11.4 1*W

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

1'.
0
IM

DEVELOPMENT OF AN
INTERACTIVE CONTR".. ENGINEERING

COMPUTER ANALYS IS PACKAGE (I CECAP)
FOR DISCRETE AND CONTINUOUS SYSTEMS

THESIS (VOLUME I OF 11)

AFIT/GE/EEI82D-34 Charles J1 Gembarowski

Major USAF

FEB 22 1983

Approved for public release; distribution unlimited

4-

AFIT/GE/EE/82D-34

DEVELOPMENT OF AN

INTERACTIVE CONTROL ENGINEERING

COMPUTER ANALYSIS PACKAGE (ICECAP)

FOR DISCRETE AND CONTINUOUS SYSTEMS

THESIS (VOLUME I OF II)

Presented to the Faculty of the School of Engineering

of the Air force Institute of Technology

Air Training Command

in Partial Fulfillment of the

* DRequirements for the Degree of

Master of Science

by

Charles J. Gembarowski, B.S.

Major USAF

Graduate Electrical Engineering

December 1982

Approved for public release; distribution unlimited.

II

This investigation continues the development of the
Interactive Control Engineering Computer Analysis Package
(ICECAP) begun by Captain Glen T. Logan in his Master's
Thesis. This package applies to the design and analysis of
discrete and continuous control systems. A VAX 11/780 is
used as the host computer for ICECAP.

I wish to thank the AFIT faculty members and students
who tested the computer program for me and provided valuable
comments. I wish to thank my fellow thesis students Captain
Kevin W. Rose, Captain Eugene C. Gilpin, Jr. and Second
Lieutenant Steven M. Hadfield for their advice on the use of
the VAX 11/780 and for their camaraderie.

I wish to thank my predecessor, Captain Glen T. Logan,
for the work he did in starting the ICECAP project and in
particular for the assistance and training he provided to
help me start my thesis project.

I wish to express my sincere gratitude to my thesis
advisor, Dr. Gary B. Lamont, for his invaluable direction
and encouragement thoughout the entire thesis endeavor. I
also thank the other members of my thesis committee, Dr.
Robert E. Fontana, Dr. Peter S. Maybeck, and Mr. John Smith
for their efforts in reviewing my thesis and critiquing the
program.

Finally, I would like to sincerely thank my devoted and
loving wife, Missy, and my two children, Charles and
Christopher, for their help, sacrifices and endurance
thoughout the entire AFIT assignment.

.9,00

VOLUME I AND VOLUME II

Preface °. l

List of Figures vii
Abstract 0 viii

VOLUME I

CHAPTER 1 INTRODUCTION

1.1 BACKGROUND1-1
1.2 INVESTIGATION OF O ER TOOLS 1-2
1.3 PROBLEM STATEMENT 1-31.4 SCOPE* 9 * * 1-4
1.5 APPROACH .. .* * * * * * * 1-5
1.6 OVERVIEW OF THESIS 1-7

CHAPTER 2 REQUIREMENTS DEFINITION

2.1 INTRODUCTION 2-1
2.2 DEFINITIONS OF PRIORITIES 2-2
2.3 REQUIREMENTS 2-3
2.4 TESTING REQUIREMENTS2-9
2.5 SUMA 2-10

CHAPTER 3 DESIGN STRUCTURE

3.1 INTRODUCTION 3-1
3.2 REQUIREMENTS SUMMARY 3-2
3.3 DESIGN CONSTRAINTS , . e . . * 3-3
3.4 DESIGN APPROACH 3-4
3.5 USER "PRIENDLINESS" 3-6
3.6 ENVIRONMENT 3-8
3.7 SUMMARY . o 3 _11

N [o

T~able gL Coantents

CHAPTER 4 IMPLEMENTATION

4.1 INTRODUCTION 4-1
4.2 SYSTEM DESIGN 4-1
4.3 ALGORITHM4S 4-4
4.4 PASCAL/FORTRAN iNTERFACE 0*** . . 4-11
4.5 DESIGN DOCUMENTATION 4-13
4.6 SUMMARY e . * e . o . * o . o . . a o . o * . 4-14

CHAPTER 5 TESTING

5.1 INTRODUCON O...5-1
5.2 TESTING REQUIREMENTS*. 5-1
5.3 TESTING PL.5-2
5.4 TESTING RESULTS 5-6
5.5 SUMMARY . . * 5-7

CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS

6.1 INTRODUCTION 6-1
6.2 CONCLUSIONS 6-1
6.3 RECOMMENDATIONS 6-3
6.4 SUMMARY 6-7

BIBLIOGRAPHY . Bib-i

APPENDIX A STRUCTURE CHARTS

A.1 INTRODUCON O... A-1
A.2 STRUCTURE CHART STANDARDS A-1
A.3 ICECAP MODULE HIERARCHY *. *. ..A-2
A.4 LIST OF STRUCTURE CHARTS * . A-4
A.5 SUMMARY o 9 * * . o * 9 e e o e * . 9 * . v A-31

APPENDIX B DATA DICTIONARY

B.1 INTRODUCTION B-i
*B.2 DICTIONARY STANDARDS B-2

B.3 DATA DICTIONARY B-3
B.4 DATA DICTIONARY BLANK FORM B-23
B.5 SUMMARY B-24

iv

Table f Co~annta

APPENDIX C PROBLEM REPORTS

C.1 INTRODUION. C-1
C.2 PROBLEM REPORTS C-i
C.3 BLANK PROBLEM REPORTFPORK C-12
CA4 SUMMARY . * e o . * * o o * * * o * e e . 9 . C-13

APPENDIX D COMPUTER AIDED DESIGN PACKAGES FOR CONTROL

D.1 INTRUTOND. CT.I.O. D-1
D.2 PROGRAM SYNOPSES * D-1
D .3 SUMMARY . e o . e . . % a e o o . . . * * . . D-12

APPENDIX E COMMAND LANGUAGE DEPINITION

E.1 INTRODUCTION E-1
E.2 LIST OF COMMAND LANGUAGE DEFINITIONS E-1
E.3 COMMAND LANGUAGE DEFINITION STANDARDS E-2
E .4 SUMMARY E-8

APPENDIX F FORTRAN MODULE DESCRIPTIONS

F.i INTRODUIONO... -1
F.2 DESCRIPTION OF NEW FORTRAN MODULES F-i
F.3 DESCRIPTION OF REVISED FORTRAN MODULES P-2
FA. SUMMARY . o P -S

VOLUME II

APPENDIX G ICECAP PASCAL SOURCE CODE G-1

APPENDIX H SOURCE CODE FOR ICECAP FORTRAN MODULES ... H-i

APPENDIX I FILES INFORMATION

1.1 INTRODUCTION.. e. .. .*.. 1-2
1.2 COMMAND FILES o.. I-2
1.3 OPTION FILE FOR ICER:. . . . 1-9
1.4 ICECAP DATA FILES 1-11
1.5 PROGRAM CODE FILES 1-12
1.6 SUMMARY r -22

46

2ahla 2L Contents

APPENDIX J TESTING DOCUMENTATION

3.1 INTRODUCTION J-2

J.2 TESTING DATA J -3
J.3 SUMMARY J -2.1

vi

Lini 2L riguxe

FigrfA

3-1 ICECAP Gross Data Flow Diagram 3-4
3-2 ICECAP Overall Structure Chart 3-5
4-1 ICECAP Gross Flow Chart . 4-2
4-2 Flow Chart for Procedure READCOM 4-7
4-3 Flow Chart for Procedure DICTIONARY 4-9
4-4 Flow Chart for Procedure INTERPRET 4-12
A-1 Structure Chart for Procedure BOXIT A-5
A-2 Structure Chart for Procedure COPY A-6
A-3 Structure Chart for Procedure DEFINE A-7
A-4 Structure Chart for Procedure DEFINEPROMPT . . . A-8
A-5 Structure Chart for Procedure DEFINETF A-9
A-6 Structure Chart for Procedure DEF_TF_PLANE . . . A-1
A-7 Structure Chart for Procedure DICTIONARY A-il
A-8 Structure Chart for Procedure

DISPLAY..OR..PRINT*** ****.. A-12
A-9 Structure Chart for Procedure FORM A-13
A-5 Structure Chart for Procedure HELP A-14
A-il Structure Chart for Procedure HELP_COPY A-15
A-12 Structure Chart for Procedure HELP_INITIAL . . . A-16
A-13 Structure Chart for Procedure HELPPROMPT A-17
A-14 Structure Chart for Procedure HELP_SYSTEM A-18
A-15 Structure Chart for Program ICECAP A-19
A-16 Structure Chart for Procedure INTERPRET A-20
A-17 Structure Chart for Procedure LOCUS A-21
A-1 Structure Chart for Procedure

LOCUS_AUTOS CAL A-22
A-19 Structure Chart for Procedure LCUSMAGNIFY.. A-23
A-20 Structure Chart for Procedure LOCUS_SHRINK . . . A-24
A-21 Structure Chart for Procedure PAUSE A-25
A-22 Structure Chart for Procedure READCOM A-26
A-23 Structure Chart for Procedure TITLE_SLIDE A-27
A-24 Structure Chart for Procedure TURN A-28
A-25 Structure Chart for Procedure TURN-PROMPT A-29
A-26 Structure Chart for Procedure TURDO . . * . . . A-30
E-1 Command Language Definition for COPY o . . o E-4
E-2 Command Language Definition for DEFINE E-4
A-3 Command Language Definition for DISPLAY E-5
E-4 Command Language Definition for FORM . . . E . . E-5
E-5 Command Language Definition for HELP . o . o . . E-6
E-6 Command Language Definition for PRINT . o o . , . E-6
E-7 Command Language Definition for TURN o . . o . E-7

S

vii

3
AF7T/GE/EE/82D-34

This thesis reports on an effort to design and

implement a modern interactive computer-aided design and

analysis package for control systems. This package applies

to discrete and continuous time systems. The thesis effort

continues the effort begun by Captain Glen T. Logan who used

a control engineering design and analysis computer program

called TOTAL as his starting point.

This thesis project uses top-down structured analysis

and programming techniques to define the new program called

ICECAP (Interactive Control Engineering Computer Analysis

Package). A user-oriented command lanaguage forms the basic

structure of ICECAP. On-line assistance is provided to the

user. The program makes use of CRT (Cathode Ray Tube)

terminals with a limited graphics capability to improve the

user environment.

The program structure allows features to be added in a

modular fashion so that others can continue the effort.

Emphasis was placed on implementing the continuous time

functions first.

viii

161

CHAPTER 1

INTRODUCT ION

1.1 BACKGROUND

Control system design is a very complicated engineering

process. There are many steps involved and sophisticated

design tools are required for each step. Furthermore, the

control system design process is a cyclic one requiring many

iterations that can be very tedious if accomplished

manually. Tools to aid in the control systems design

process have evolved somewhat independently so that the need

for a systems approach to computer-aided design of control

systems is apparent.

Two students of the Air Force Institute of Technology

(AFIT), Frederick L. O'Brien (52] and Stanley J. Larimer

[38] used a systems approach in designing and implementing

such a tool. Their system, a very powerful software

package, is in use today and is known as TOTAL. TOTAL is

ehosted on the CDC (Control Data Corporation) Cyber, one of

the most heavily used computers at Wright-Patterson Air

1-I1:

INTRODUCTION

Force Base.

Another AFIT student, Glen Logan [41], successfully

transported this design tool from the Cyber to the VAX

11/780 in an effort to improve the running environment of

TOTAL and to reduce the workload on the Cyber. The computer

program in this new environment is known as VAXTOTAL.

VAXTOTAL is the foundation upon which this thesis

investigation is built. VAXTOTAL is a development version

only--it is not meant for release. This thesis effort

continues Logan's work. The computer program that results

from this thesis investigation will be known as ICECAP

(Interactive Control Engineering Computer Analysis Package).

This program will be used for the analysis and synthesis of

both digital and continuous systems.

1.2 INVESTIGATION OF OTHER TOOLS

There are other control system design and analysis

tools available. Appendix D is a synopsis of some of these

tools. This appendix includes tools investigated by Logan

in his thesis [41] as well as tools found during this thesis

investigation. References are given for each tool that is

summarized in Appendix D.

TOTAL and VAXTOTAL were chosen as the starting point

for this thesis effort because they are Air Force owned, are

well established at AFIT, and have proven themselves to be

1-2

t4
• Ii

INTRODUCT i. h

very useful and powerful tools with potential for expansion.

The time and budget allotted to a thesis effort does not

allow for a costly and lengthy procurement of other tools

nor for acquiring the rights to modify commercially

available tools.

1.3 PROBLEM STATEMENT

Although it is a very powerful design tool, TOTAL has

many deficiencies in its structure and in its usability.

Reference Appendix D for a description of TOTAL's

capabilities.

1.3.1 Structure - As modern control theory evolves, it will

be necessary to extend TOTAL to incorporate new features.

TOTAL's structure makes this growth very difficult. The

fact that TOTAL had to be segmented into an overlay

structure in order to fit it onto the Cyber makes software

maintenance more difficult. The use of FORTRAN Common

variables makes the modules too tightly coupled.

1.3.2 Usability - TOTAL now favors the experienced user.

For example, it requires the user to supply codes in the

form of option numbers. Some of the command words that

TOTAL uses are not action words, so they cannot be

associated with the action that is to be taken. These

characteristics make it difficult to learn how to use the

system. As a result, new users are discouraged. The

1-3

INTRODUCT ION

problem is especially severe at AFIT where the primary user

is the control systems student who does not yet have a firm

grasp of control theory. This type of user has the double

problem of having to learn new material and the use of a

computer-aided design tool. The environment in which the

student must use TOTAL (i.e., the Cyber accessed via

teletype terminals) is a source of frustration rather than

an aid to the learning process.

The main objective of this thesis investigation is to

overcome these problems by making the system easy to learn

and usable for both experienced and inexperienced personnel

and by making the computer environment more pleasant.

1.4 SCOPE

This thesis investigation will design a modern control

system computer-aided design tool called ICECAP.

1.4.1 Sound software engineering [37, 64, 66] and human

engineering [47, 56, 57] techniques will be used throughout

the entire effort.

1.4.2 The thesis effort will revise and incorporate the

existing modules from TOTAL that are needed for ICECAP.

1-4

INTRODUCT ION

1.4.3 The primary structure will be provided through the

use of the Pascal programming language [22, 23, 24, 25, 34,

37, 54, 60]. The heart of the computation will be done by

the FORTRAN modules if they are best suited for this task.

However, the design will be such that either Pascal or

FORTRAN can be used for the lower level modules.

This thesis effort will design ICECAP in a highly

structured and modular fashion so that subsequent thesis

students can understand the current version of ICECAP,

complete the system, and maintain the system in an orderly

fashion.

1.5 APPROACH

A two-phase approach is used in this development:

1.5.1 Requirements Definition Phase - The major effort in

this phase will be to evaluate the existing versions of

TOTAL and VAXTOTAL. The major steps to be taken in this

phase are as follows:

1.5.1.1 Establish and study the baseline of VAXTOTAL.

1.5.1.2 Run test cases in order to identify errors with

TOTAL and VAXTOTAL. Establish a test plan that will be used

to determine whether or not VAXTOTAL produces results

equivalent to TOTAL.

1-5

INTRODUCTION

1.5.1.3 Establish the requirements for ICECAP using past

efforts as the point of departure.

1.5.1.4 Demonstrate the feasibility of interfacing a

FORTRAN program with a Pascal program on the VAX. This

interface is at the heart of Logan's design for ICECAP but

was not used in VAXTOTAL.

1.5.1.5 Demonstrate the feasibility, usefulness and

acceptance of an on-line capability that will provide

assistance when the user demands it and when the program

senses that the user needs it.

1.5.2 Design/Implementation Phase - This phase consists of

performing and documenting the following tasks:

1.5.2.1 Design a program structure that will allow

follow-on thesis students to design, test, and modify the

computer program in stages.

1.5.2.2 Correct errors in the present implementations of

TOTAL and VAXTOTAL including correcting the major

inconveniences in using the program.

1.5.2.3 Implement and interface the computer program

modules as time permits.

1-6

INTRODUCTION

1.6 OVERVIEW OF THESIS

This thesis is contained in two volumes. Volume I

contains all of the chapters and Appendices A through F.

Volume II contains Appendices G through J. The major

chapters and appendices are briefly summarized as follows:

Chapter 2 provides the requirements definition for

ICECAP in the form of a specification with an emphasis on

the functional requirements. The specification is meant to

cover the requirements for the entire ICECAP project. This

thesis implements only a subset of this specification.

Chapter 3 documents the design structure for ICECAP.

This chapter is designed to transfer the "corporate memory"

of "why the design is what it is" to follow-on thesis

students.

Chapter 4 documents the implementation of ICECAP.

Voluminous details of the design are provided in appendices

and separate documents as appropriate. These details are

provided so that other thesis students can continue the

effort.

Chapter 5 defines the requirements on how to test

ICECAP. These tests will establish whether or not ICECAP

satisfies the requirements defined in Chapter 2.

1-7

... U -.- -- " - ' . ." ' " - I' i '" . . .- _ . .#I

INTRODUCTION

Chapter 6 contains the conclusions reached in this

thesis investigation and gives recommendations regarding

follow-on efforts.

Appendix A contains the structure charts for ICECAP in

alphabetical order. These charts establish the program

modules needed for ICECAP and show the data and the control

flow through the program.

Appendix B is the data dictionary for the ICECAP

modules. The dictionary entries are in alphabetical order

and give an overview of the function of each module and the

parameters and variables used in each module.

Appendix C is a set of reports that document problems

with TOTAL, VAXTOTAL, and ICECAP. These reports serve as a

basis for correcting the deficiencies in these three

programs.

Appendix D is a synopsis of existing and planned

computer-aided design packages for control systems.

Appendix E contains the definition of the ICECAP

command language in flow chart form. These charts provide

an unambiguous definition of the language.

Appendix F contains descriptions of the new and revised

FORTRAN modules used in ICECAP.

~1-8

INTRODUCT ION

Appendix G contains the Pascal source code for ICECAP.

Appendix H contains FORTRAN source code for ICECAP.

The modules are listed in alphabetical order. Only new and

revised modules are included. The unchanged modules from

TOTAL and VAXTOTAL have been documented by Logan in the form

of unpublished source code listings.

Appendix I contains information about where the

important computer files relating to this thesis effort are

located.

Appendix J contains the relevant documentation

resulting from testing ICECAP.

These chapters and appendices are meant to be "livingm

documents. They are expected to change as the result of

follow-on thesis efforts as more and more of ICECAP becomes

defined and implemented.

I

1-9

CHAPTER 2

REQUIREMENTS DEFINITION

2.1 INTRODUCTION

This chapter forms the systems requirements

specification for the entire ICECAP project. The meanings

of requirements priority categories are first defined. Then

the requirements are stated in logical order, with the

priority defined for each requirement. Functional

requirements, human engineering requirements, and software

engineering requirements are included. This thesis effort

will implement a subset of these requirements, viz., the

priority one requirements. It is anticipated that follow-on

thesis efforts will implement the other requirements.

Finally, the testing requirements are stated and organized

into four major categories of functional requirements

testing, program tlow testing, on-line assistance capability

testing, and output capability testing.

2-1

- .-

REQUIREMENTS DEFINITION

2.2 DEFINITIONS OF PRIORITIES

The requirements below have been categorized into one

or more of three priorities in order to facilitate dividing

out the entire ICECAP project into meaningful thesis

efforts. The definitions of these priorities are as

follows:

2.2.1 Priority One - This priority means that this

requirement must be at least partially contained in the

initial program design in order to have a running program

with which to demonstrate both feasibility and capability.

This may involve both requirements that are already

satisfied by VAXTOTAL and requirements that are new to

ICECAP. This category generally refers to all of the human

interface requirements, to the most important features

required for continuous time design and analysis, and to the

software engineering requirements. Continuous time features

are considered a higher priority than the discrete time

features because generally students are taught the

* fundamentals of continuous control systems before the

fundamentals of discrete control systems.

2.2.2 Priority Two - This priority refers to requirements

that are at least partially implemented in VAXTOTAL but need

not be implemented in ICECAP at this time in order to

demonstrate feasibility and capability. This category

2-2

REQUIREMENTS DEFINITION

generally refers to the matrix manipulation features, the

discrete time design and analysis features and the remainder

of the continuous time design and analysis features.

2.2.3 Priority Three - This category refers to the

functional requirements needed to have a complete control

system computer-aided design package. It includes

functional requirements related to the control system design

area presently within the state of the art but not yet

implemented in VAXTOTAL. Examples of these kinds of

requirements are the stochastic estimation and control

requirements.

2.3 REQUIREMENTS

ICECAP shall assist the user in performing

conventional, modern, and stochastic control system design

and analysis for both discrete and continuous systems. The

specific requirements and their priorities (in parentheses)

are as follows:

2.3.1 Functional Requirements - ICECAP shall provide the

following functional capabilities:

2.3.1.1 Transfer Function Manipulation (1)

2.3.1.1.1 Open Loop Transfer Function (1)

2.3.1.1.2 Closed Loop Transfer Function (1)

2-3

-- 1 .. . " - |.-- -....I I

6.

REQUIREMENTS DEFINITION

2.3.1.1.3 Forward Transfer Function (1)

2.3.1.1.4 Feedback Transfer Function (1)

2.3.1.1.5 Return Difference Transfer Function (2)

2.3.1.1.6 Block Diagram Manipulation (2)

2.3.1.2 Matrix Algebra (2)

2.3.1.2.1 Matrix Addition (2)

2.3.1.2.2 Matrix Subtraction (2)

2.3.1.2.3 Matrix Multiplication (2)

2.3.1.2.4 Matrix Inversion (2)

2.3.1.2.5 Matrix Transposition (2)

2.3.1.2.6 Matrix Factorization (2)

2.3.1.2.7 Matrix Square Roots (2)

2.3.1.2.8 Solve Ax-b (2)

2.3.1.2.9 Singular Value Decomposition (2)

2.3.1.3 Polynominal Manipulation (2)

2.3.1.4 Calculator Functions (2)

4 2.3.1.5 State Variable Equation Manipulation (2)

2-4

REQUIREMENTS DEFINITION

2.3.1.6 Control System Definition (1, 2)

2.3.1.7 Steady State Response Analysis (1)

2.3.1.8 Transient Response Analysis (1)

2.3.1.9 State Transition Matrix Evaluation (2)

2.3.1.10 State Equation Solver (2)

2.3.1.11 Laplace Transformations (2)

2.3.1.12 Inverse Laplace Transformations (2)

2.3.1.13 Partial Fraction Expansion (1)

2.3.1.14 Frequency Response Evaluation (2)

2.3.1.14.1 Bode Plots (2)

2.3.1.14.2 Direct Polar Plots (2)

2.3.1.14.3 Inverse Polar Plots (2)

2.3.1.15 Stability Analysis (2)

2.3.1.15.1 Routhian Array (2)

2.3.1.15.2 Nyquist (2)

2.3.1.15.3 Nichols Plots (2)

(_ 2.3.1.16 Steady State Error Analysis (2)

2-5

REQUIREMENTS DEFINITION

2.3.1.17 Root Locus Analysis (1)

2.3.1.18 Root Locus Compensation (2)

2.3.1.18.1 Cascade Compensation (2)

2.3.1.18.2 Feedback Compensation (2)

2.3.1.19 Closed Loop Pole-Zero Assignment (2)

2.3.1.19.1 Guillemin-Truxal Design (2)

2.3.1.19.2 State Variable Feedback (2)

2.3.1.20 Algebraic Riccati Equation Solver (3)

2.3.1.21 Z Transformation (2)

2.3.1.22 Inverse Z Transformation (2)

2.3.1.23 Digital Computer Compensation (2)

2.3.1.24 Filter Design (2)

2.3.1.25 Stochastic Estimation and Control Design and

Analysis (3)

2.3.1.25.1 Kalman Filter Design for Continuous and Discrete

Time Measurements (3)

2.3.1.25.2 Analysis of Kalman Filter Design (3)

2.3.1.25.3 Square Root Filtering (3)

2-6

REQUIREMENTS DEFINITION

2.3.1.25.4 U-D Covariance Factorization Filtering (3)

2.3.1.25.5 Weiner Filtering (3)

2.3.1.25.6 Optimal Smoothing (3)

2.3.1.25.7 LQG (Linear Quadratic Gaussian) Controller

Design for Continuous and Discrete Time Systems (3)

2.3.1.25.8 Observer and Full-State Feedback Controller

Design via Pole-Placement Methods (3)

2.3.1.26 Z-Domain Stability Analysis (2)

2.3.1.26.1 Jury-Blanchard Test (2)

2.3.1.27 S-Domain to W-Domain Transformations (2)

2.3.1.28 S-Domain to Z-Domain Transformations (2)

2.3.1.28.1 First Backward Difference (2)

2.3.1.28.2 Tustin Transformation (2)

2.3.1.29 Pseudo Continuous Time Control System Analysis and

Synthesis (2)

2.3.1.30 Compensator Design (2)

2.3.1.30.1 Direct (DIR) Method (i.e, all design is done in

the Z-domain) (2)

2-7

REQUIREMENTS DEFINITION

2.3.1.30.2 Digital (DIG) Method (i.e., the design is

started in the S-domain and then transferred to the

Z-domain) (2)

2.3.2 Human Enginering Requirements - ICECAP shall be user

friendly:

2.3.2.1 ICECAP shall provide on-line assistance in its use

upon demand. (1, 2, 3)

2.3.2.2 ICECAP shall be command oriented. A means to

assist the users in formulating commands shall be provided.

This assistance shall not be distractive. It shall not

[impede those users who do not need on-line assistance. (1)

2.3.2.3 ICECAP shall provide instruction in the various

aspects of control theory through some sort of teaching

facility. (2, 3)

2.3.2.4 ICECAP shall notify the users when they have erred

in providing input. This shall be done in a non-hostile

manner using meaningful error messages. (1)

2.3.2.5 ICECAP shall provide a facility for providing

meaningful and selective printed output as the means of

documenting the users' designs of control systems. (1)

2.3.2.6 ICECAP shall provide a means of storing the

essentials of a design in progress so that the users may

2-8

REQUIREMENTS DEFINITION

continue their designs at other sessions. (1)

2.3.2.7 ICECAP shall provide a capability for the users to

define command strings so that they may iterate a design

without having to type in the same commands repeatedly.

This shall include a facility for the users to specify data

as part of the command string. (2)

2.3.3 Software Engineering Requirements - ICECAP shall be

designed using sound softwAre engineering principles such as

those advocated in the software engineering literature [37,

64, 66] so that it can be easily maintained and augmented.

(1)

2.3.3.1 ICECAP shall be as portable as reasonable, i.e., it

shall be capable of being rehosted on other VAX's. (1)

2.3.3.2 ICECAP shall be modular. (1)

2.3.3.3 ICECAP shall use loosely coupled modules as much as

possible. (1)

2.4 TESTING REQUIREMENTS

ICECAP shall be tested as follows:

2.4.1 Functional Requirements - The functional requirements

that have been implemented in ICECAP shall be tested using

known test cases, such as the sample problems in the student

handouts [30]. It shall be determined whether or not ICECAP

2-9

REQUIREMENTS DEFINITION

provides results consistent with (or better than) the

results of using TOTAL for these problems. ICECAP numerical

results shall be considered consistent when they are the

same as the results of TOTAL within a tolerance of 0.001.

ICECAP results shall be considered better than TOTAL's

results when a deficiency in TOTAL has been corrected in

ICECAP.

2.4.2 Program Flow - ICECAP shall be run to determine

whether or not the program flows properly. The program must

transistion to valid known states. The program must not

hang in an endless loop. The ability to exit gracefully

from the program must be demonstrated.

2.4.3 On-line Assistance - The ability of the intended user

to formulate the commands necessary to design and analyze a

control system with the on-line assistance that is provided

must be demonstrated.

2.4.4 Output Capability - The ability to document a control

system design and analysis selectively and conveniently must

be demonstrated.

2.5 SUMMARY

The systems requirements specification for the entire

ICECAP project has just been presented. Priority categories

have been established and their meanings defined. The

2-10

REQUIREMENTS DEFINITION

functional requirements, human engineering requirements, and

the software engineering requirements were stated and

priorities were assigned to each requirement. Finally, the

testing requirements were stated and organized into four

major categories of functional requirements testing, program

flow testing, on-line assistance capability testing, and

output capability testing.

2-11

Mam

CHAPTER 3

DESIGN STRUCTURE

3. 1 INTRODUCTION

This chapter addresses the design structure for those

requirements stated in Chapter 2 that are to be implemented

as a result of this thesis effort. Basically, the chapter

addresses the priority one requirements but at the same time

dictates a design structure that will support the

implementation of all of the design requirements at some

future time.

The chapter begins with an outline of the top-level

requirements that affect the ICECAP design structure. Next,

the constraints that influence the structure are addressed.

The approach used to derive the design structure is

provided. Finally, how the need for user "friendliness' and

how the computer environment are related to the structuring

of the ICECAP design are addressed.

3-1

DESIGN STRUCTURE

3.2 REQUIREMENTS SUMMARY

This section outlines the top-level requirements that

drive the design structure of ICECAP. The paragraph

references to the requirements of Chapter 2 are provided.

3.2.1 Specifically, ICECAP shall be designed to assist the

user in performing control system design and analysis for

both discrete and continuous systems (cf. para. 2.3).

3.2.2 Certain basic functional capabilities shall be

provided in the initial design of ICECAP in order to have a

working system and to prove the concept so that further

implementation of functional capabilities can proceed.

These initial capabilities shall include: transfer function

manipulation (cf. para. 2.3.1.1); steady state response

analysis (cf. para. 2.3.1.7); and root locus analysis

(cf. para. 2.3.1.17).

3.2.3 ICECAP shall be designed to be user "friendly".

Specifically, ICECAP shall provide on-line user assistance

in the form of prompting upon demand; ICECAP shall allo:

the user to specify action by explicit commands that are

readily recalled by the user rather than by cryptic codes

which must be looked up in a manuall ICECAP shall provide

error checking and notification in a clear and non-hostile

manner (cf. para. 2.3.2).

3-2

DESIGN STRUCTURE

3.3 DESIGN CONSTRAINTS

The design of ICECAP is constrained by several factors

including the size of VAXTOTAL, the availability of

resources, and the amount of time available for the thesis

project.

3.3.1 Program Size - Because of its large size, a complete

redesign and rewrite of VAXTOTAL is not practical. This

constraint dictates that ICECAP be the combination of a new

program written in a language suitable for processing user

commands and of selected modules from VAXTOTAL written in

FORTRAN. The FORTRAN modules should be capable of

performing the powerful calculations that a control system

design tool demands.

3.3.2 Availability Of Resources - The ICECAP design is also

constrained by the existing computer facilities and computer

programming languages available at AFIT. This includes the

existing input and output devices presently available at

AFIT. These constraints have very positive aspects since

they drive the use of a virtual memory system, the use of

interactive terminals, and the use of the Pascal language.

The input and output devices constraint means that there can

be very little plotting capability designed into the program

at this time. However, the design must allow for a plotting

capability to be added at a later time.

3-3

maim

DESIGN STRUCTURE

3.3.3 Time - The amount of time that any one thesis student

can be reasonably expected to devote to such a large project

definitely constrains the design. This constraint dictates

that the program be designed in a modular fashion using a

tree structure so that new features can be implemented

I ilater. This constraint also dictates that the program be

well documented.

3.4 DESIGN APPROACH

The design approach for ICECAP was to use top-down

structured analysis. This approach developed into five

major steps as follows:

3.4.1 Develop The Gross Data Plow Diagram - The first step

was to develop the gross data flow diagram shown below.

USER USER PROGRAM DEVICE
INPUT COMMAND DATA DATA

Figure 3-1. ICECAP Gross Data Flow Diagram

The above diagram was developed by Logan [41: 48].

3-4

DESIGN STRUCTURE

Basically, the user provides input which is then interpreted

as a command. The command then executes a procedure or a

series of procedures at which time data may be required of

the user. The execution of the procedure(s) results in data

going to an output device or file.

3.4.2 Develop The Overall Program Structure - Next, the

overall program structure was developed as shown below.

ICECAP

.1117

READ INTERPRET EXECUTE
COMMAND COMMAND COMMANDWORDS

PROVIDE
ON-LINE
ASSISTANCE

Figure 3-2. ICECAP Overall Structure Chart

Commands or partial commands input by the user are read and

on-line assistance is provided as necessary to aid the user

in formulating complete commands. Once a command is fully

formed, the interpret modules decode the command. Once

3-5

__ _ i,

DESIGN STRUCTURE

decoded, the commands are translated. The translation is

then passed to a set of modules that actually execute the

command. The process repeats until the user stops the

program.

3.4.3 Define Syntax For One Command - Next the syntax

diagram was developed for one specific command, the DEFINE

command. This command is of sufficient complexity so as to

ring out the ability of the design structure to support the

processing of multi-word commands. The details of the

syntax for this command are found in Appendix E.

3.4.4 Develop The Modules - The modules to implement the

overall design structure and to implement the DEFINE command

specifically were then developed. The details of this

implementation are the subject of Chapter 4.

3.4.5 Iterate The Process - With the overall structure now

developed and one command implemented and working, the

development process now repeats and the syntax diagrams for

other commands are developed and implemented one by one.

The program thus grows in a tree-like fashion. Also, the

structure and the modules are refined in this step.

3.5 USER "FRIENDLINESS"

The user is the reason why ICECAP exists. Special

attention has been given to making the system "friendly" to

3-6

DESIGN STRUCTURE

the user. Special prompting features have been built in to

the system so that a new user can quickly learn and enjoy

using the system. These features have been designed in such

a way that an experienced user is not distracted by the

on-line help that is available.

The system is able to sense when the user needs

prompting and provides only that prompting which is needed.

The design structure for this process is as follows. The

user issues a carriage return as a signal for the system to

respond. There are three cases of how the system responds.

3.5.1 Invalid Command - If the user has entered an invalid

command, the system responds with a message as to the nature

of the error and then user has the opportunity to re-enter

the command.

3.5.2 Incomplete Command - If the user has entered an

incomplete command, the system responds with choices for the

next command word. The design structure allows a short

explanation of the nature of each of the choices. The user

simply types in one of these choices.

3.5.2.1 Complete And Valid Command - If the user has

entered a complete and valid command, the system responds by

executing the command.

3-7

DESIGN STRUCTURE

3.6 ENVIRONMENT

The computer environment determines how "user friendly" a

system can be made. The design structure of ICECAP

capitalizes on the pleasant computer environment that the

host computer affords in order to maximize the user

"friendliness".

3.6.1 Screen Terminal - The design structure of ICECAP

takes advantage of the fact that the user will be using a

screen terminal rather than a printing terminal (although

the structure can accommodate the use of a printing terminal

if one is desired). These advantages are faster response

time, the ability to highlight important information, the

ability to use graphics, and the ability to review

information before printing it.

3.6.1.1 Response Time - Because the system has a fast

response time, ICECAP is structured to provide the user with

more meaningful information. For example, as far as the

user can tell, it takes no longer to print the menu of valid

initial commands words and the prompt asking the user for

input than it does to print only the prompt. This menu

certainly makes the working environment more pleasant for

the user at no additional time expense.

3-8

DESIGN STRUCTURE

3.6.1.2 Highlighting - The structure of ICECAP provides the

capabilty to highlight text at anytime that highlighting is

needed. This gives the ICECAP programmer the capability to

emphasize command words so that the user can learn the

ICECAP command language much more quickly. The user

remembers the highlighted words and can associate these

words as building blocks for valid ICECAP commands. The

structure charts of Appendix A show that ICECAP has been

designed in such a way that highlighting can be turned on

and off by subprogram calls.

3.6.1.3 Graphics - Similarly, ICECAP has been structured to

support a capability to turn the terminal graphics on and

off by subprogram calls. This can be seen by reading the

structure charts in Appendix A. This gives the programmer

the opportunity to enhance the user's understanding of

control theory and the use of the design tools by drawing

control system block diagrams on the terminal.

3.6.1.4 Selective Printing - One of the most aggrevating

aspects of doing a computer-aided design on a printing

terminal is that the resulting output is a running tally of

all of the design iterations and user errors. The result is

that it is very difficult to walk away from the design

session with a neat bottom line design suitable for

submission to an instructor or to an employer. At best, the

user sorts through the printout which may be several yards

3-9

DESIGN STRUCTURE

long and tries to recap the important information and

re-enter it so that only the end result is printed out. The

design structure of ICECAP makes this tedious and

error-prone re-entry process totally unnecessary. ICECAP

allows the user to review all output on the screen. Once

satisfied with the results, the user can than cause the

output to be written to a file which can be neatly printed

out in as many copies as desired after the design session.

The modularity of the ICECAP design structure makes this

selective printing possible.

3.6.2 No Need For User's Manual - The fact that the design

structure of ICECAP allows on-line assistance to be

developed for a command at the same time that the ICECAP

command is implemented in the language obviates the need for

a user's manual. The user's manual is actually provided on

line. This makes the environment more pleasant for the user

because there usually is very little room at the terminal

station to accommodate user's manuals, especially when the

user needs to have textbooks and worksheets there for the

specific design problem at hand.

3.6.3 Files Storage - One of the most important features

needed for a pleasant user environment is the ability to

store files so that a control system design can be continued

at another session. To re-enter all previous data in order

to continue a design session is a very tedious and

3-10

DESIGN STRUCTURE

error-prone task. ICECAP has been structured to take

advantage of the files management system of the VAX 11/780

and to allow the user to store current designs and several

previous designs so that any design session may be continued

at any time.

3.7 SUMMARY

This chapter has addressed the design requirements and

constraints that have influenced the ICECAP design

structure. In particular, the role of the computer

environment and the requirement for a "friendly" user

interface in establishing that structure has been addressed.

The major steps taken in applying top-down structured

analysis to derive the design structure were described.

3-11

CHAPTER 4

IMPLEMENTATION

4.1 INTRODUCTION

This chapter describes the details of the overall

architecture of ICECAP. This description is from the

viewpoint of how the program flows in order to process and

execute any user initiated ICECAP command. The details of

how the program flows for all possible ICECAP commands are

too voluminous and cannot be treated in this chapter. That

amount of detail is left to the appendices. However,

examples of a specific command are given in order to show

the architecture for the general case.

4.2 SYSTEM DESIGN

ICECAP is designed using top-down structured

programming techniques [37, 64, 66]. A gross flow chart is

provided in Figure 4-1. The major activities are as

follows:

4-1

IMPLEMENTATION

BEGIN

INITIALE

FORMULATE
COMMAND

INTERPRET
AND TRANSLATE
COMMAND

Figure 4-1, ICECAP Gross Flow Chart

4-2

IMPLEMENTATION

4.2.1 Program Initialization - This activity includes the

normal things that are done to initialize any program, i.e.,

clear the screen, display the initial title slide, set

certain values to zero and set variables and flags to their

initial values.

4.2.2 Command Formulation - This activity begins with a

prompt in the form of a menu-like header that shows all of

the valid command words that can be used to start a valid

ICECAP command string. As words are selected, further

prompting is available to indicate the valid choices for the

next word in the command string. If the next command word

is known, the user is not bothered by the prompting. This

process continues until a valid command string is formed.

4.2.3 Command Interpretation And Translation - Once a valid

command string is formed its meaning must be interpreted so

that it may be translated for use by the FORTRAN modules

that carry out the actual command.

4.2.4 Command Execution - Except for changes to improve

performance, the execution of the commands is done basically

in the same manner as is now done in VAXTOTAL. The details

of the various VAXTOTAL commands have been documented ir.

previous theses [38, 41] and user manuals [30, 39] and will

not be repeated here.

4-3

IMPLEMENTATION

4.2.5 Return Of Control - Control is then returned to the

main program after the command has been executed. A new

command can then be entered, interpreted, translated, and

executed. This process repeats until the user indicates

that the user has finished by entering the command 'STOP*.

4.3 ALGORITHMS

The algorithms associated with the activities

associated above are now described.

4.3.1 Program Initialization - The initialization activity

consists of clearing the screen, setting the terminal

parameters, displaying an initial screen showing copyright

information and program identification information, and

initializing values.

4.3.1.1 Clearing The Screen - This process is carried out

by the Pascal procedure called CLEAR which is a

terminal-unique message that is written to the terminal.

4.3.1.2 Setting The Terminal Parameters - This process is

carried out by the main program by sending a terminal-unique

message to the terminal to put the screen into the inverse

video mode. The inverse video is the mode of dark letters

on a light background. The use of inverse video is strictly

a matter of taste. It provides a brighter screen which is

(more pleasing to the eye. The user can override this

4-4

IMPLEMENTATION

setting by using the terminal set-up keys.

4.3.1.3 Initial Screen Display - This process is carried

out by the Pascal procedure TITLE_SLIDE which, among other

things, puts the terminal into the graphics mode, paints the

word ICECAP onto the screen, draws a box around the word

ICECAP, displays the authors, and shows the copyright

information. Effort was put into designing the title slide

in this manner in order to emphasize that the user is

entering into the program and to give the program a

professional appearance. It is important that the users

perceive that they are using a professional program, if they

are to have confidence in the results.

4.3.1.4 Initialization - Initialization of the Pascal

portion of the program is carried out by the main program.

Initialization of the FORTRAN portion of the program is

carried out by the new FORTRAN module called TOTINI which

sets various control flags as well as setting variables to

their inital values.

4.3.2 Command Formulation - The command formulation

activity consists of prompting the user on valid initial

command words, reading the command words, checking the

validity of the command words, and prompting the user on

valid choices for the next word in the command.

4-5

IMPLEMENTATION

4.3.2.1 Initial Command Word Prompt - The prompting

activity is done by the Pascal subprogram HELP_PROMPT. This

subprogram prints a header which lists all of the available

initial command words highlighted with light letters on a

dark background in contrast to the remaining text which is

dark letters on a light background. Because of the

highlighting the user is able to learn the initial command

words more quickly and therefore can eventually disable this

prompting feature. Highlighting is done by terminal-unique

commands sent to the terminal as a result of calls to

subprograms HIGHLIGHT and NOHIGHLIGHT.

4.3.2.2 Reading The Command Words - The command word

reading and collecting is done by the Pascal subprogram

READCOM. Reference Figure 4-2. READCOM displays the ICECAP

prompt (ICECAP>) as a signal for the user to begin

entering a command. Unnecessary blanks are trimmed by the

Pascal subprogram TRIM and the command word(s) are put in

uppercase by the VAX Library Routine named STR$UPCASE. This

makes the later parsing of the commands simpler yet allows

the user to enter commands in lower, upper, or mixed case.

The reading process continues until the user issues a

carriage return signalling to the program that the command

is complete or that a prompt is needed for the next command

word. A flag with the variable name RESOLVED is used to

indicate whether or not the command string is a complete

4-6

IMPLEMENTATION

NY

N

DISPLAYwICECAP>" IPA

,+

Y

FgREAD2 lwCar o rcdueRA~J

COMMAND

FCHANGE TO
UPPERCASE

STRIP OUT
EXCESSIVE
BLANKS

Figure 4-2o Flow Chart for Procedure READCOM

4-7

-- • #4

IMPLEMENTATION

one. If RESOLVED is false, procedure READCOM reads the next

command word(s) as a continuation of the previously entered

command word(s). If RESOLVED is true, READCON reads the

next command word(s) as a new command.

4.3.2.3 Validity Checking Algorithm - Validity checking is

done in two ways as follows:

4.3.2.3.1 First, each command word is checked against the

ICECAP dictionary of valid command words. Reference Figure

4-3. This is done by the Pascal subprogram DICTIONARY. If

any word used in the command string is not a valid ICECAP

command word the user is so notified. Abbreviations are

allowed and also appear in the dictionary. If a valid

abbreviation is used in a command string, the subprogram

DICTIONARY substitutes the expanded version of the word for

the abbreviation. For example, if the command word that the

user enters is AMA, then procedure DICTIONARY changes that

command word to AMAT. This makes the parsing simpler later

and teaches the user the full spelling of the ICECAP command

words. If all words in the command string are valid command

words, the second phase of the validity checking begins.

4.3.2.3.2 The first command word in the command string is

checked to see if it is a valid initial command word. This

is done by the Pascal subprogram INTERPRET. If the first

command word the user has entered is not a valid initial

4-8

IMPLEMENTATION

ALLMATH MUI

NN

Figre -3. Flo Char fOE Prcdr CTIMDORY

BUFFER?

IMPLEMENTATION

command word the user is so notified and the ICECAP prompt

is displayed so that another command may be entered.

Depending on what the initial command word is, the

subprogram INTERPRET branches out in a tree-like fashion to

other Pascal subprograms to look for valid objects of the

initial command word and notifies the user if an invalid

object has been encountered. This branching out and

validity checking continues until the command string is

finished and the command is ready for execution.

4.3.2.3.3 Prompting - Prompting is given when the program

senses that the user needs information on what the next word

in the command string can be. The user signals the need for

this information by issuing a carriage return anywhere in

the command formulation process. Upon receiving this signal

the program displays the valid choices for the next command

word. This is done in a tree-like manner wherein each

Pascal subprogram displays the choices that are appropriate

for the command that has been partially formulated.

Reference Figure 4.4. For example, in formulating the

command DEFINE GTF POLY, the Pascal subprogram DEFINE calls

Pascal subprogram DEFINE_PROMPT in order to prompt the valid

choices for the second command word. Once the user has

selected the second command word, in this case GTF, then the

Pascal subprogram DEFINE calls Pascal subprogram DEFINE_TF

which then prompts the user to choose the third command

4-10

IMPLEMENTATION

word, in this case POLY.

4.3.2.4 Command Interpretation And Translation - Command

Interpretation is made via the program flow. Reference

Figure 4-4. The choice of certain command words that make

up the command string cause certain If-Then-Else statements

to execute. If-Then-Else statements are used to direct the

flow because the more convenient case statements do not work

for strings in Pascal. (However, for clarity, the decisions

in Figure 4-4 are shown with case statements.) The

interpretation of the entire command comes from having

executed certain combinations of If-Then-Else statements.

Once the interpretation is known then the translation is

made directly to option numbers that the current version of

VAXTOTAL normally receives directly from the user. This

translation is passed to the FORTRAN modules as if they were

coming directly from the user as coded VAXTOTAL option

numbers or VAXTOTAL commands. How this is done is described

in the next section.

4.4 PASCAL/FORTRAN INTERFACE

The main Pascal/FORTRAN interface is the FORTRAN module

TOTICE (named for TOTAL and ICECAP). The Pascal portion of

ICECAP interprets the user commands and translates them

either to VAXTOTAL option numbers or to VAXTOTAL commands.

4-11

IMPLEMENTATION

CASE FIRST COMMANDWORD (CW)

COPY DEFINE *@UPDATE ELSE

CASE *ERROR

SECOND MESSAGE_1*__END
GTF *. CLTF AMAT *. ELSE

CASE ** ERROR
THIRD ** MESSAGE

CW * * 6END

Figure 4-4. Flow Chart for Procedure INTERPRET

4-12

IMPLEMENTATION

4.4.1 Option Numbers - If the command translates to an

option number, then the option number is passed to TOTICE

via the first element in the argument list (OPTIONNUMBER).

If this is the case, the second element in the argument list

is ignored. The FORTRAN modules then react to this option

number just as if the number had been entered by the user

using VAXTOTAL.

4.4.2 Commands - If the command translates to a VAXTOTAL

command, then option number zero is passed to TOTICE via the

first element in the argument list (OPTIONNUMBER) to signal

the fact that the second element in the argument list (LINE)

is a command. This command is then passed to the FORTRAN

modules to be processed as if the command had been entered

by the user using VAXTOTAL.

4.5 DESIGN DOCUMENTATION

The design doc-umentation has been logically arranged in

the appendices of this thesis for the convenience of the

reader and to facilitate program maintenance. Program

maintenance refers to correcting logical errors in the

existing program as well as to continuing program

development. The appendices which contain this design

information are as follows:

o Appendix A, Structure Charts
o Appendix B, Data Dictionary

4-13

-I-----

IMPLEMENTATION

o Appendix E, Command Language Definition
o Appendix F, FORTRAN Module Descriptions
o Appendix G, ICECAP Pascal Source Code
o Appendix H, ICECAP FORTRAN Source Code

4.6 SUMMARY

The design implementation and rationale for the

implementation decisions of ICECAP have just been presented.

Details on how the program is initialized and on how

commands are formulated, translated and executed have been

presented. Details on specific commands are out of scope of

this chapter because the heart of the design implementation

is in the general command processing capability. This

chapter would have been too voluminous if it had treated

every possible ICECAP command. The details of each specific

command are shown in Appendix A, Structure Charts and

Appendix E, Command Language Definition.

4-14

CHAPTER 5

TESTING

5.1 INTRODUCTION

This chapter covers the entire program for testing

ICECAP. It addresses the testing requirements, the plan for

conducting the testing, the results of the testing and all

of the documentation generated as a result of the testing.

5.2 TESTING REQUIREMENTS

The requirements for testing ICECAP as stated in

Chapter 2 are repeated here for convenience and

completeness.

5.2.1 Functional Requirements - The functional requirements

that have been implemented in ICECAP shall be tested using

known test cases, such as the sample problems in the student

handout on the use of TOTAL [30]. This handout contains

several printouts of actual interactive sessions. It shall

be determined whether or not ICECAP provides results

consistent with (or better than) the results that TOTAL

5-1

TESTING

and/or VAXTOTAL provide for these problems.

5.2.2 Program Flow - ICECAP shall be run to determine

whether or not the program flows properly. The program must

transition to valid known states. The program must not hang

in an endless loop. The ability to exit gracefully from the

program must be demonstrated.

5.2.3 On-line Assistance - The ability of the intended user

to formulate the commands necessary to design and analyze a

control system with the on-line assistance that is provided

must be demonstrated.

5.2.4 Output - The ability to document a control system

design and analysis selectively and conveniently must be

demonstrated.

5.3 TESTING PLAN

The following plan shall be used in testing the

previously described requirements.

5.3.1 Informal Testing - All program modules shall be

thoroughly tested before they are integrated into the main

program. As each module is integrated into the main

program, the program shall be thoroughly tested to assure

that the added function works properly and that no program

degradation has taken place. No formal documentation is

required for informal testing.

5-2

TESTING

5.3.2 Formal Testing - Formal testing shall be carried out

for a representative sample of the entire program. The

following paragraphs constitute this formal testing. The

samples shall be chosen to demonstrate formally the ability

of the program to meet the requirements defined in Chapter

2.

5.3.2.1 Functional Requirements - The following functional

requirements shall be tested using relevant test cases from

the student handout [30]. Results shall be compared with

the results documented in the student handout to see if they

are within reasonable tolerances allowed for the differences

in the wordlengths of the Cyber (wordlength = 60 bits) and

the VAX 11/780 (wordlength = 32 bits). In accordance with

Chapter 2, a tolerance of 0.001 shall be considered

reasonable. Results that are out of tolerance shall be

documented and explained if possible. The functional

requirements to be tested are as follows:

o The use of the DEFINE command to input one or more

of the following: GTF, HTF, OLTF, CLTF using both

the polynomial form and the factored form.

o The use of the FORM command to form one or more of

the following:

o OLTF using GTF and HTF
o CLTF using OLTF
o CLTF using GTF and HTF

5-3

.. .

TESTING

o The use of the PRINT LOCUS AUTOSCALE command to

demonstrate the autoscaling and proper plotting of

the Root Locus.

o The use of the PRINT SPECS command to demonstrate

the ability to analyze the specifications of the

control system properly using a step input.

5.3.2.2 Program Flow - A representative subset of all

possible ICECAP commands shall be tested to assure that the

program flows properly and does not hang in an endless loop.

The following commands shall form the minimum subset:

o DEFINE AMAT
o COPY AMAT BMAT
o PRINT BMAT
o DEFINE GTF FACT
o DEFINE HTF POLY
o FORM OLTF
o PRINT OLTF
o FORM CLTF USING OLTF
o PRINT LOCUS AUTOSCALE
o PRINT LOCUS MAGNIFY
o HELP SYSTEM
o HELP INITIAL
o HELP COPY
o DISPLAY SPECS
o TURN MAINMENU ON
o TURN MAINMENU OFF
o UPDATE
o RECOVER
o STOP

5-4

TESTING

5.3.2.3 On-Line Assistance - This requirement shall be

tested in two ways:

5.3.2.3.1 By the use of the HELP command. The information

provided shall be reviewed for clarity and usefulness to the

user, particularly the novice user.

o HELP INITIAL
o HELP SYSTEM
o HELP COPY

5.3.2.3.2 By typing commands one word at a time followed by

a carriage return to determine whether all information is

provided to enable the user to formulate an entire ICECAP

command. The following words shall be used as starting

points for formulating these commandst

o DEFINE
o HELP
o COPY
o FORM
o DISPLAY
o PRINT
o TURN

5.3.2.4 Output - The ability of the system to provide

printouts to document a control system design adequately

shall be tested. The results of running the tests on the

functional requirements defined above can be used.

Printouts shall be produced for the following items:

o GTF
o HTF
o OLTF

5-5

I

TESTING

O CLTF
o a Root Locus
o a set of specifications

5.4 TESTING RESULTS

The tests of the previous sections were run. Both

formal and informal testing were conducted.

5.4.1 Informal Testing - Day to day use of the program as

well as thorough testing of each module as it was developed

and integrated constituted the informal testing. All of the

new and revised code was exercised. Printouts were made and

results were compared against hand calculations and against

runs of TOTAL and VAXTOTAL. All problem areas uncovered

during this testing were either resolved or documented in

Appendix C as problem reports. Note that Appendix C also
documents problems with TOTAL and VAXTOTAL.

5.4.2 Formal Testing - Appendix J contains the testing

documentation generated as a result of the formal testing

conducted in accordance with the test plan. This appendix

contains copies of screen displays as well as copies of

printed output generated when ICECAP was executed. All

testing results are satisfactory.

5-6

TESTING

5.5 SUMMARY

The requirements for testing ICECAP have been restated

from Chapter 2. The plan for carrying out the various tests

has been provided and the testing results and anomolies have

been documented. Information on where to find the various

testing related documents has been provided.

5

CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 INTRODUCTION

This chapter discusses the conclusions reached as a

result of having done this thesis effort. The chapter also

makes recommendations regarding the continuation of the

effort, deLQa...Lng features that should be implemented.

6.2 CONCLUSIONS

The following conclusions were reached:

6.2.1 It Is Feasible To Interface Pascal With FORTRAN

It is indeed feasible and practical to interface a

Pascal Program to FORTRAN modules. The ICECAP main program

is written in Pascal and has several modules written in

rascal. FORTRAN subroutines are called by Pascal

procedures. There are defined ways on how to call a FORTRAN

subroutine from a Pascal program. These ways are described

in the VAX/VMS manuals [22, 23, 24, 251.

6-1

CONCLUSIONS AND RECOMMENDATIONS

6.2.2 Modular Structure Is Workable For ICECAP

The use of a highly structured language does allow one

to define an overall structure and fill in the detailed

functions at a later time. This technique does allow one to

have a program that functions properly for those features

that one has implemented. Thus several people can work on

separate portions of the ICECAP program either separately or

together and even at different periods of time during the

program development cycle.

6.2.3 CRT Terminals Are Superior To Printing Terminals

ICECAP was tested using several students and

instructors as subjects. Without exception, those subjects

who had previously used printing terminals for TOTAL felt

that the CRT terminal interactive sessions were superior to

the printing terminal interactive sessions, especially since

printouts of their choosing could be made available at any

time during the sessions. The fast response time of the CRT

terminal made the session much more pleasant and productive.

More iterations of a design problem can be done per unit

time using the CRT than can be done using a printing

terminal.

6-2

CONCLUSIONS AND RECOMMENDATIONS

6.2.4 ICECAP On-Line Help Is Effective

un-line help, if properly implemented, is more effctive

than help that must be obtained from manuals. The fact that

there is one fewer book to manage at the terminal is a

practical consideration that enhances the productivity of

any session, especially where there is very limited terminal

space, such as in a school environment.

The followi!.g recommendations are made:

6.3.1 Thesis Effort Be Continued

This thesis effort should be continued. This is a very

worthwhile effort. The need for a tool that does complex

control system design and analysis has already been

established. The need for a tool that is easy and pleasant

to use is just now becoming appreciated, since the

importance of human engineering is becoming more and more

recognized.

6.3.2 More Continuous Time Functions Be Implemented

Although this thesis effort concentrated on

implementing the continuous time functions first, not all of

these functions were implemented. The functions yet to be

implemented include the following:

6-3 I'

CONCLUSIONS AND RECOMMENDATIONS

o Tabular listing of F(t) (cf. TOTAL Option 31)

o Plot F(t) at user's terminal (cf. TOTAL Option 32)

o Printing the time equation (cf. TOTAL Option 35)

o Partial fraction expansion (cf. TOTAL Option 36)

o Selection of step, ramp, impulse, pulse or sine
input (cf. TOTAL Option 39)

6.3.3 More Root Locus Functions Be Implemented

This thesis effort concentrated on plotting the root

locus at the user's terminal and in a print file, adding the

automatic scaling feature. Other root locus functions

should be added as follows:

o Zoom feature. With this feature the user would
have to enter only a center point of interest (an X
coordinate and a Y coordinate) and a positive
distance. With that information the program would
calculate the borders and display the root locus
using those borders.

o Root locus with a gain of interest (cf. TOTAL
Option 42)

o Root locus with a damping ratio of interest (cf.
TOTAL Option 43)

o List n points on a branch of interest (cf. TOTAL
Option 44)

6.3.4 Other Functional Capability Be Implemented

Other capabilities which should be implemented are as

follows:

fol o Discrete time functions

6-4

jam-

CONCLUSIONS AND RECOMMENDATIONS

o Matrix manipulation functions

o Polynomial manipulation functions

o Robustness analyses

o Return-difference transfer functions

o Singular value decomposition

o Plots of max/min singular value vs. frequency

6.3.5 Stochastic Functions Be Defined

Since there is no Stochastic capability either in

ICECAP or TOTAL at this time, the desirability for and an

approach for adding this capability should be studied. The

Stochastic functions recommended for implementation should

be very carefully and unambiguously defined. Initially, the

study can be limited to the following:

o Time invariant systems

o Stationary noises

o Constant-gain filters

o Constant-gain controllers

These areas of study would lead to an approach for defining

the following capabilities:

o Design and analysis of constant-gain LOG

controllers

o Design and analysis of constant-gain Kalman filters

o Generation of power spectral density (PSD) plots of
(any signal of interest

6-5 J

CONCLUSIONS AND RECOMMENDATIONS

o Generation of a plot of the autocorrelation kernel

as the inverse Fourier transform of that PSD

6.3.6 Teach Modules Be Developed

An approach for developing the teach modules should be

carefully studied. The lesson objectives shculd be outlined

and lesson plans should be developed before any attempt is

made to implement a teaching module.

6.3.7 Data Dictionary For TOTAL Be Established

Since many of the modules of TOTAL will be the basis

for ICECAP, it is important that the baseline of TOTAL be

better understood. The variable names in TOTAL are not at

all descriptive. It oftentimes takes days, even weeks, to

understand some of the modules. Once the effort has been

expended in understanding the workings of these modules,

that knowledge should be documented so that others do not

have to expend the same effort. One of the best ways to

document this corporate memory is through a data dictionary

for TOTAL, wherein all of the variables and subroutines are

explained. The dictionary should be sent to all those who

are involved in changing TOTAL for contributions. There

should be an OPR (Office of Primary Responsibility)

established to collect the contributions and to publish the

updated dictionary periodically.

6-6

CONCLUSIONS AND RECOMMENDATIONS

6.3.8 ICECAP Be Rehosted

ICECAP should be rehosted on the AFIT VAX which

operates under the UNIX operating system. This system is

intended for student class use and can accommodate a larger

student load than can the AFIT VAX in the Digital

Engineering Laboratory which is intended to be used for

research. Once ICECAP is rehosted, the students and faculty

can use ICECAP instead of Cyber TOTAL.

6.3.9 Plot Capability Be Enabled

Since it has been determined that the printer in the

AFIT Digital Engineering Laboratory now has a working

graphics capability, an effort should be made to implement a

plotting capability in ICECAP.

6.4 SUMMARY

Several conclusions were reached as a result of this

thesis effort. This chapter has detailed these conclusions.

This chapter also details several recommendations regarding

the continuation of the ICECAP project. Recommendations on

what functional capabilities ought to be implemented in

ICECAP have been included.

6-7

BIBLIOGRAPHY

1. Astrom, K. J. and H. Elmquist. "Perspective on
Interactive Software for Computer Aided Modeling and Design
of Control Systems," P jnganl L o hI 20th IEE Confren
n Deisi and Control, December 1981.

2. Balchen, Jens G. and Arne Tysso. "Application of CAD in
Modeling, Identification and Control of Industrial and Large
Scale, Nontechnical Processes," Pirc of 2f 2±& th ITEr
cnfeence 2n Disio And Cono, December 1981.

3. Balfour, A. and D. H. Marwick. Pogramming in Standard
FORTRAN 2. New York, New York: North-Holland, Inc., 1979.

4. Brubaker, Thomas A. Deeoment 2t improved Design
Methods fo= Digital Fil.tring g AFAL-TR-77-207.
Fort Collins, Colorado: Colorado State University, 1
November 1977.

5. Colgate, James A. INTERC - An Interactiy Software
Package fDir Det Digital Control Design. MS Thesis.
Wright-Patterson Air Force Base, Ohio: Air Force Institute
of Technology, December 1977.

6. D'Azzo, John J. and Constantine H. Houpis. Linear
ControlSst m Alyia And Dgsgn Conventional and
Modern, Second Edition. New York, New York: McGraw-Hill
Book Company, 1981.

7. Dakin, Karl J. and David A. Higgins. "Fingerprinting a
Program," Daamationi April 1982.

8. Davis, Richard M. Thesis Projects in Scilence ad
EngineerLU. New York, New York: St. Martin's Press,
1980.

Bib-i

BIBLIOGRAPHY

9. Didaleusky, Dennis G. J. MuLti-.Bi±. Digitl Control
S.ytmsNwith Si mulAtin ADplications, Volume III: Source
Listings. AFWAL-TR-80-3101. Wright-Patterson Air Force
Base, Ohio: Flight Dynamics Laboratory, September 1980.

10. Digital Equipment Corporation. D TEditor Manual.
AA-J726A-TC. Maynard, Massachussetts: Digital Equipment
Corporation, October 1980.

11. Digital Equipment Corporation. Engineering Syt
S Referral jQatg, Sixth Edition. Maynard,
Massachusetts: Digital Equipment Corporation, 1980.

12. Digital Equipment Corporation. YVAX tems and Q0t ion
Summary. Maynard, Massachussetts: Digital Equipment
Corporation, April 1981.

13. Digital Equipment Corporation. VAX/VMS Command
Langae User'A Guide. AA-D023C-TE. Maynard,
Massachusetts: Digital Equipment Corporation, May 1982.

14. Digital Equipment Corporation. VAX/VMS Guide IQlUin/ g
Command P. AA-H782B-TE. Maynard, Massachusetts:
Digital Equipment Corporation, May 1982.

15. Digital Equipment Corporation. YAX/ Primer.
Maynard, Massachusetts: Digital Equipment Corporation,
1978.

16. Digital Equipment Corporation. 3(AX/VM Software
Handbk. Maynard, Massachusetts: Digital Equipment
Corporation, 1978.

17. Digital Equipment Corporation. YAK/VMS Summary
Description. Maynard, Massachusetts: Digital Equipment
Corporation, 1978.

18. Digital Equipment Corporation. VAX-lDIG ITAL Standard
Runoff (DSRI User's Guide. AA-J268B-TK. Maynard,
Massachusetts: Digital Equipment Corporation, May 1982.

19. Digital Equipment Corporation. VAX-11 FORTRAN Laniage
Reference Manu&al. AA-D034C-TE. Maynard, Massachusetts:
Digital Equipment Corporation, April 1982.

20. Digital Equipment Corporation. VAX-1 FORTRN Langlag
Reference Hanual. AA-D034B-TE. Maynard, Massachusetts:
Digital Equipment Corporation, April 1980.

Bib-2

BIBLIOGRAPHY

21. Digital Equipment Corporation. VAX-_11 QOBAN User's
G AA-D035C-TE. Maynard, Massachusetts: Digital
Equipment Corporation, April 1982.

22. Digital Equipment Corporation. VAX-11 FAIAcA Language
Rference anual. AA-H484B-TE. Maynard, Massachusetts:
Digital Equipment Corporation, March 1981.

23. Digital Equipment Corporation. VAX-11 £Paal Language
ece anga1. Maynard, Massachusetts: Digital

Equipment Corporation, November 1979.

24. Digital Equipment Corporation. VAX-11 Pascai Uer's
Guide. AA-H485B-TE. Maynard, Massachusetts: Digital
Equipment Corporation, March 1981.

25. Digital Equipment Corporation. VAX-11 Pascal User's
Guide. Maynard, Massachusetts: Digital Equipment
Corporation, November 1979.

26. Digital Equipment Corporation. VAX-1 RunTim Library
User's Guide. AA-L824A-TE. Maynard, Massachusetts:
Digital Equipment Corporation, April 1982.

27. Digital Equipment Corporation. VAX-11lRunTim Library
efen Manual. AA-D036C-TE. Maynard, Massachusetts:
Digital Equipment Corporation, April 1982.

28. Digital Equipment Corporation. VAX-11 Smbolic
e.ugger RefeenceManual. AA-D026C-TE. Maynard,

Massachusetts: Digital Equipment Corporation, January 1979.

29. Digital Equipment Corporation. VT-100J e rGuide.
Second Edition. Maynard, Massachusetts: Digital Equipment
Corporation, January 1979.

30. Fontana, Robert E. Sample TOTAL Pint.ut.
Unpublished Student Handouts for Course EE 562.
Wright-Patterson Air Force Base, Ohio: Air Force Institute
of Technology.

31. Harvey, C. A. and J. E. Wall. "Phases in the

Development of Control System Design Software,w ProceadingApf la2=i TRRR Cofrec n Decision an~d Cnr
December 1981.

32. Herget, C. J. and Thomas P. Weis. Linear Systems
Analysi Progam User's Manual. UCID-30184. Livermore,
California: Lawrence Livermore Laboratory, October 1980.

Bib-3

BIBLIOGRAPHY

33. Hernandez, Enrique G. An L rt i Computational
Aerodynamics Analysisj Pg . MS Thesis. Wright-Patterson
Air Force Base, Ohio: Air Force Institute of Technology,
December 1980.

34. Holt, R. C. and J. N. P. Hume. PogramMin s tandard
Pascal. Reston, Virginia: Reston Publishing Company, Inc.,
1980.

35. Houpis, C. H. and Gary B. Lamont. Leture Notes on
Digital C Systems/Information ggjina.
Wright-Patterson Air Force Base, Ohio: Air Force Institute
of Technology, August 1980.

36. Kennedy, Thomas A. = Design of Digital CoarlleXA
f= th= C-141 Airaf i g Entire Eigenstructure
Assiginmen and the Develpment pt a Inter-Active C
Design Program. MS Thesis. Wright-Patterson Air Force
Base, Ohio: Air Force Institute of Technology, March 1979.

37. Koffman, Elliot B. Problem Soling And r.utured
Programmin in Pascal. Reading, Massachusetts:
Addison-Wesley Publishing Company, 1981.

38. Larimer, Stanley J. An Ineative Computer-Aided
Design PLQram fo Digital And Continu Contro1 Systm
Analysis and synthesi. MS Thesis. Wright-Patterson Air
Force Base, Ohio: Air Force Institute of Technology, March
1978.

39. Larimer, Stanley J. TOTAL Usrs Manual (CAD).
Wright-Patterson Air Force Base, Ohio: Air Force Institute
of Technology, June 1981.

40. Larimer, Stanley J. and Holly L. Emrick. "On the
Possibility of Common Control System Design Software for
Government, Education, and Industry," Unpublished.

41. Logan, Glen T. Depment oL an InteractiveC omjteL
Ai flgign ProgrA frL Digital And CmntinuaU Control
Ssm AnalyssMand Synthesis. MS Thesis. Wright-Patterson
Air Force Base, Ohio: Air Force Institute of Technology,
March 1982.

42. Mancini, Anthony J. Cmuter Aided Control Systm
Desgn Using Feguency Domain Specifications. Monterey,
California: Naval Postgraduate School, June 1976.

43. Maybeck, Peter S. StohastiC Models natimaftin and
C . Volume 1. New York, New York: Academic Press,
1979.

Bib-4

BIBLIOGRAPHY

44. Maybeck, Peter S. Stohastic Models, i m aion and
Control. Volume 2. New York, New York: Academic Press,
1982.

45. Maybeck, Peter S. Stochastic Mod e .Etimation and
Control. Volume 3. New York, New York: Academic Press,
1982.

46. McQuay, William K. A Com r.atiya Gide I& NQS/BE and
VAX118 Command Languiage. Wright-Patterson Air Force
Base, Ohio: Avionics Laboratory, Air Force Wright
Aeronautical Laboratories, October 1980.

47. Moynihan, John A. "What Users Want," DataLation, April
1982.

48. Munro, Neil. "Illustration of the Applicability of
Computer Aided Design Packages," PrQ.eoin.at the 2=th
I= Confe n Deision And Control, December 1981.

49. Musick, Stanton H. SOFE. A nralized Digital
Simulation ±Q Opimal Filter Eyaluation URLrR Mnanual,
AFWAL-TR-80-1108. Wright-Patterson Air Force Base, Ohio:
Avionics Laboratory, October 1980.

50. Musick, Stanton H. S - A Plotting Postprocessor
f.QZ QSOFE' User's Manual, AFWAL-TR-80-1109.
Wr!ght-Patterson Air Force Base, Ohio: Avionics Laboratory,
November 1981.

51. Nadler, Gerald and Ali Seireg. "Professional
Engineering Education in the Classroom," Engineer'
£E3u.ajjont May 1982.

52. O'Brien, Frederick L. A Consolidated C u Program
Lfu ontrlQ Sy.tm Design. MS Thesis. Wright-Patterson Air
Force Base, Ohio: Air Force Institute of Technology,
December 1976.

53. Polak, E. "Interactive Software for
Computer-Aided-Design of Control Systems via Optimization,"
PoLcedi= f ±he 2lh I= nferenca 2on De~isin and
Control, December 1981.

54. Prather, Ronald E. Problem Solving r inciplo.
gLProammjn jlgh Pascal. Englewood Cliffs, New Jersey:

Prentice-Hall, Inc., 1982.

55. Shneiderman, Ben. "How to Design with the User in
Mind," fatamation, April 1982.

Bib-5

BIBLIOGRAPHY

56. Simpson, Henry. "A Human-Factors Style Guide for
Program Designt" Dij April 1982.

57. Smith, H. T. and T. R. G. Green. i== Int ei ti2n
with Co New York, New York: Academic Press, 1980.

58. Spielman, Stephen Christie. Freguz n MIathda in
Com ut Aided Design 2L Control Sytems. MS Thesis.
Urbana, Illinois: University of Illinois, Urbana, December
1976.

59. Strang, Gilbert. Linear Analysis And I=s A2,~itiona
(Second Edition). New York, New York: Academic Press,
1980.

60. Tiberghien, Jacques. Th& PascaliHandbook. Berkeley,
California: Sybex, 1981.

61. Tausworthe, Robert C. Standardized Develpmnt of
CompiteSoftwr. Englewood Cliffs, New Jersey:
Prentice-Hall, 1979.

62. Vines, Larry Paul. CoMputx Aided Desig 2f sysm.
Monterey, California: Naval Postgraduate School, June 1975.

63. Walker, Robert, Charles Gregory, Jr., and Sunil Shah.
"MATRIXx: A Data Analysis, System Identification Control
Design and Simulation Program," Abstract of paper awaiting
publication.

64. Weinberg, Victor. StructurediAalyis. New York, New
York: Yourdon Press, 1979.

65. Whitbeck, Richard F. and Dennis G. J. Didaleusky.
Multi-Rakte Digital Contro Sytms bwth 91mulatiorl
AV1ications, Volume I: Technical Report AFWAL-TR-80-3101.
Wright-Patterson Air Force Base, Ohio: Flight Dynamics
Laboratory, September 1980.

66. Yourdon, Edward and Larry L. Constantine. Sructured
Designs Fundamentals 2L oL AoDisapina 2f Comnktar Progra
and systems Dhhign. New York, New York: Yourdon Press,
1978.

Bib-6

,I-

APPENDIX A

STRUCTURE CHARTS

A.1 INTRODUCTION

This appendix contains the Structure Charts that show
all of the calls of the ICECAP main program through and
including the subprogram (TOTICE) that interfaces with the
VAXTOTAL modules. The VAXTOTAL modules have already been
documented in previous works [38, 41] and therefore are not
repeated here. This appendix details the standards which
were used in developing the structure charts. Appendix B
explains the purpose of each module shown in the structure
charts of Appendix A.

A.2 STRUCTURE CHART STANDARDS

For the sake of clarity and consistency the following
standards were used in developing the structure charts
contained in this appendix:

A.2.1 Only one level of depth is portrayed on a given

chart.

A.2.2 Open arrows show data flow.

A.2.3 Closed arrows show control that affects program flow.

A-1

STRUCTURE CHARTS

A.2.4 Diagrams are in alphabetical order.

A.2.5 The extra horizontal line on certain boxes indicates
that there are lower level diagrams for those boxes.

A.2.6 The subordinate boxes in each diagram are in the
order in which the subprograms are first called. Each
subprogram is shown only once even though it may be called
more than once.

A.3 ICECAP MODULE HIERARCHY

The following outline shows the hierarchy of the ICECAP
modules. A change in a level of indentation indicates that
the more deeply indentured module is declared in the less
deeply indentured module. For example, Procedure TOTINI is
declared in Progam ICER.

A-2

Ai

STRUCTURE CHARTS

Program ICER
Procedure TOTINIProcedure TOTICE
Procedure FINDBORDERS
Procedure MAGNIFY
Procedure SHRINK
Function STR$UPCASE
Procedure CLEAR
Procedure GRAPHICS
Procedure NOGRAPHICS
Procedure HIGHLIGHT
Procedure NOHIGHLIGHT
Procedure PAUSE
Procedure CURSORRC

Procedure LIB$SET_CURSOR
Procedure BOXIT
Procedure TITLE_SLIDE
Procedure TRIM
Procedure HELPPROMPT
Procedure DICTIONARY
Procedure READCOM
Procedure PRINT_BUFFER
Procedure PACK_BUFFER
Procedure INTERPRET

Procedure COPY
Procedure DEFINE

Procedure DEFINE_TF
Procedure DEF_TF_PLANE

Procedure DEFINEPROMPT
Procedure DISPLAYORPRIN

Procedure LOCUS
Procedure LOCUS-AUTOSCALE
Procedure LOCUSMAGNIFY
Procedure LOCUSSHRINK
Procedure LOCUS_ZOOM

Procedure FORM
Procedure HELP

Procedure HELPCOPY
Procedure HELP_INITIAL
Procedure HELP_SYSTEM

Procedure TURN
Procedure TURN_X
Procedure TURN-PROMPT

A-3

STRUCTURE CHARTS

A.4 LIST OF STRUCTURE CHARTS

BOXIT
COPY
DEFINE
DEFINE-PROMPT
DEFINETF
DEF_TFPLANE
DICTIONARY
DISPLAYORPRINT
FORM
HELP
HELPCOPY
HELPINITIAL
HELPPROMPT
HELPSYSTEM
ICECAP
INTERPRET
LOCUS
LOCUS_AUTOSCALE
LOCUS_MAGNIFY
LOCUSSHRINK
PAUSE
READCOM
TITLESLIDE
TURN
TURNPROMPT
TURN_X

A-4

STRUCTURE CHARTS

0

0

E-41

4J
0

4

W 00

t~ E- 4

IA-5

STRUCTURE CHARTS

-iz zz
m oo

HO

W to

00

Z >4

N W .D

0MO U

aha

E-4

54 41

0 (Ul

M E-

r244

'4-0

F-4eN

eA-

STRUCTURE CHARTS

AU

>4

&44 It

ra Z O

0E40

ui i-i u c

00

., , ,n,%o ..
I h-a

C44

(0

A-7

rzu

44040

41

03

ON EO E , 2

haCD 0

rzO UW
zH

). S S

A-7

STRUCTURE CHARTS

00

P4

rz
'-4

4

43
0

0
54 14

p4-

0 0
'44

p4 I4f

WIU
H A
440

S.'

4J

A-8.

STRUCTURE CHARTS

0 H

04

E-44

00

00

Izz

W .01* 0* 03p
fm E4 t

Ok m "2I-; I
04

A-9

STRUCTURE CHARTS

r41

0z

0

0
C.4

E-1 44
Ta4 JJ

41

A-10

STRUCTURE CHARTS

P-4

0

A-114

E--

0 ZZ Z
E-1 E-4

to MOH -
04 E-1 z

04 Z.C2 -to
H H

ra 4 0

r u H >4

44 0rz4 E-

00 ~ ra H t

0 W P

r1.4
044 W

0-

040
0O

H 'it

WC D EH 4 1.
0Z 0 E

E9A *O HEA
a_ z

E-4 H4 H

C)
H ra E4 9

~=0

0 C)

tn

EM-

'-I-

raz

E
rzru

I-iIV

0

4.1

0
02 Uz0

'41

$0 4
94a

00

E-4'

U 0LIII-4 C,0 M

STRUCTURE CHARTS

0

H I
044

z 0

E-40

:0. 1.4

A-14

STRUCTURE CHARTS

i tt

RW 040

E-1- 04

0

04

m .

04 P4
D4 4'

0 M "q

CQ 1

C-44

4 0- 0

H C

A-15i~

STRUCTURE CHARTS

CE-1

E-4

5-4

4H

0

0

HHf

E-04

0t

A-16'

STRUCTURE CHARTS

0 0
04
0

w

14.

0

4

04 0
o to

04 L4
'U

04A 17

STRUCTURE CHARTS

'-4f
oc

4)

E-94

0

43I

to 01

94 '4

94.

CoA-18

STRUCTURE CHARTS

E-4 -4

P44

0 P

E-4 m0 V
w_ 00

04

E-4 t

>r4J

040

04 01t

04 "

8 0
Vt

N C

A-19 I

'-44o~ C,

to z CE4 Z-4 E-

.. 90 E-

E-4 Z CO Z 0

E-f1OE C;'-

0

-4 wa

lz - 0

41'

to IIC
XU

rz~ra
E- 0 0 W-

Ad E-4 9 P

0 04 $z

H __H 9

j.4 2:1 r

4 II* sX
>4 8 "CR 8 LO

tt

0

01

M 0

1 W4

02

020

C/I-

0U -4 4

00

'-44 z

0t 0 :

E-' -4

I Co4

020

=AA124707 EVEIMOP.ENl 0 AN NIP O N NGNAAO
COMPUTER ANALYSIS PACPA..U) A P OP I NST 0F IH

WRIGHT-PATTERSON AFA OH SCHOOL 0F ENSI.

UNCLASSFE GMBARWSKI DEC P2 G92

Q L3.2
L3.

Ei.i L.W

1i11.2 1 1.4 1.6

MICROCOPY RESOLUTION TEST CHART
NAf"lONAL BUREAU OF STANDARDS-19

6 3-A

'4
• o

-
Sa.a~ikidhiMhu1

STRUCTURE CHARTS

4D14

0
44
41

$4

E-0

00
MS

1W4

A-22

STRUCTURE CHARTS

I cri
p
0

0
44

413

ca

413

to

0

A-23

STRUCTURE CHARTS

0

$.4

0

S.44

00

ca4

E-4'

to0z
0 o

A- 24

STRUCTURE CHARTS

E-44

54
0.

V%
WI

A-25

STRUCTURE CHARTS

4,0

0

w

0

41

00

14 C4

A-26

.

STRUCTURE CHARTS

E-4-

E-44
___ E'W C

CE-

CE-1

N- I.

c~41

1-4 44

CO

000

to 4)

-4 E-1

A-27
-

STRUCTURE CHARTS

4--

4,,

OK.G

to

m0

xo'

. w
040

040

0

r-4 W5 14

E-4'

Z, Z4

ORO

ix > 0

N_ _ _ _ Vn
X. 9k4

IJ
8U

r4 e4

A-28 4

STRUCTURE CHARTS

4,A

0

Em4

LL

4

ON

A-29

... .4..

* ~.--*-I.

STRUCTURE CHARTS

i24

E-' H

Z Z,H E4

E- V

OU2H

,, 0

E 0

va W

(4.'44

L 41
'04

to) U) W

A-30

STRUCTURE CHARTS

A. 5 SUMMARY

The structure charts for the ICECAP modules (mair
program and subprograms) were included in this appendix in
alphabetical order for ease of reference. As new modules
are added to the program they can be easily documented in
this appendix by including them in alphabetical order and by
following the standards that have been defined in this
appendix.

CA3

A-fl1

APPENDIX B

DATA DICTIONARY

B.1 INTRODUCTION

A data dictionary is data about data. This dictionary

documents all of the ICECAP modules, both Pascal and

FORTRAN, that have been developed as a result of this thesis

effort. Entries for the FORTRAN modules that are contained

in VAXTOTAL but used in ICECAP are not included.

A dictionary is not provided for the ICECAP variables.

These variables (and constants) are documented in the ICECAP

source listing in the form of comments next to the variables

in the declaration part of the program.

B-1

DATA DICTIONARY

B.2 DICTIONARY STANDARDS

The entries in this data dictionary conform to the

following standards:

o Entries are in alphabetical order.

o Entries are for the program, procedures,
subroutines, and functions.

o Data types are shown for the calling parameters and
for the variable lists.

o Categories are listed only when there is
information to be provided. If the information is
not applicable for a category, the category heading
is omitted.

o Entries are not split between two pages.

o Each entry is enclosed in its own box.

o When a module has code unique to the VT100
Terminal, the category "Application" is used.

o Entries for code written in Pascal are intermingled
with entries for code written in FORTRAN.

o The category "Filename" is used for the FORTRAN
modules since each module is separately compiled
and kept in a separate file.

B-2

DATA DICTIONARY

B.D3 DATA DICTIONARY

PROCEDURE: BOXI"

LANGUAGE: VAX/VMS Pascal

DESCRIPTION: Draws a box given the coordinates
of the upper left hand corner of the box and
the width (number of columns) and the depth
(number of rows) of the box.

APPLICATION: VT100 Terminal

CALLING PARAMETERS:
ROW : INTEGER
COL : INTEGER
WIDTH : INTEGER
HEIGHT : INTEGER

VARIABLES:
I : INTEGER

PROCEDURE: CLEAR
LANGUAGE: VAX/VMS Pascal *)

DESCRIPTION: Clears the screen and places the
cursor in the home position.

APPLICATION: VT100 Terminal

B-3

DATA DICTIONARY

PROCEDURE: COPY
LANGUAGE: VAX/VMS Pascal *)

DESCRIPTION: Copies a Transfer Function to
another Transfer Function or copies a Matrix to
another Matrix.

CALLING PARAMETERS:
VAR COMMANDBUFFER : BUFFER
BUFFERPOINTER INTEGER
VAR RESOLVED : BOOLEAN)

VARIABLES:
I : INTEGER
MESSAGE : BIGSTRING
OUTCOMMAND : BIGSTRING
TCOMMAND1 : STRING
TCOMMAND2 : STRING

PROCEDURE: CURSORRC

LANGUAGE: VAX/VMS Pascal

DESCRIPTION: Places cursor at a certain position *)
on the screen (ROW, COLUMN)

APPLICATION: VT100 Terminal

CALLING PARAMETERS:
ROW : INTEGER
COL : INTEGER

VARIABLES:
COL_TENS : CHAR
COL_ONES : CHAR
ROWTENS : CHAR
ROWONES : CHAR

B-4

DATA DICTIONARY

PROCEDURE: DEFINE

LANGUAGE: VAX/VMS Pascal

DESCRIPTION: Looks for a legal object of the
command word DEFINE and takes appropriate
action.

CALLING PARAMETERS:
VAR COMMANDBUFFER : BUFFER
VAR BUFFERPOINTER : INTEGER
VAR RESOLVED : BOOLEAN

VARIABLES:

MATCH : BOOLEAN
OPTIONNUMBER : INTEGER

PROCEDURE: DEFINE_PROMPT

LANGUAGE: VAX/VMS Pascal

DESCRIPTION: Provides information on the legal
object of the command word DEFINE and waits for *)
user response.

CALLING PARAMETERS:
VAR COMANDBUPFER : BUFFER
VAR BUFFERPOINTER : INTEGER
VAR RESOLVED : BOOLEAN)

B-5

eA

1=7"

DATA DICTIONARY

************************* *********************************)*

PROCEDURE: DEFINE-TF

LANGUAGE: VAX/VMS Pascal

DESCRIPTION: Looks for a legal object of the
command string DEFINE (transfer function)
and takes appropriate action.

CALLING PARAMETERS:
VAR COMMANDBUFFER : BUFFER *)
BUFFERPOINTER : INTEGER
VAR RESOLVED : BOOLEAN

VARIABLES:
TCOMMANDWORD : STRING

PROCEDURE: DEF_TF_PLANE

LANGUAGE: VAX/VMS Pascal

DESCRIPTION: Processes the object of DEFINE
(transfer function) (POLY or FACT) to determine
which PLANE is desired.

CALLING PARAMETERS:
VAR COMMANDBUFFER : BUFFER
BUFFERPOINTER : INTEGER
VAR RESOLVED : BOOLEAN

VARIABLES:
COMMANDWORD : STRING
OPTIONNUMBER : INTEGER

B-6

DATA DICTIONARY

PROCEDURE: DICTIONARY

LANGUAGE: VAX/VMS Pascal

DESCRIPTION: Checks each word in a command string *)
against all legal ICECAP KEYWORDs. It notifies *)
the user of all illegal command words used in
the command string. If it finds any illegal
command words it returns ALLMATCH = FALSE.

CALLING PARAMETERS:
VAR ALLMATCH : BOOLEAN
VAR COMMANDBUFFER : BUFFER
BUFFERPOINTER : INTEGER

VARIABLES:
MATCH : BOOLEAN

PROCEDURE: DISPLAYORPRIN

LANGUAGE: VAX/VMS Pascal

DESCRIPTION: Displays item on screen or prints
item in ANSWER File.

CALLING PARAMETERS:
COMMANDBUFFER : BUFFER
BUFFERPOINTER : INTEGER
VAR RESOLVED : BOOLEAN

VARIABLES:

ANSWERFLAG : BOOLEAN
I : INTEGER
MESSAGE : BIGSTRINGMESSAGEBUFFER : BUFFER

OUTCOMMAND : BIGSTRING
TCOMMAND1 : STRING
TCOMMAND2 : STRING
WHERE : STRING

B-7

DATA DICTIONARY

SUBROUTINE: FINDBORDERS

FILENAME: FINDBORD.ICE

LANGUAGE: VAX/VMS FORTRAN

DESCRIPTION: Finds the four borders for the Root *)
Locus plot (known in TOTAL as AA, BB, CC, DD)
based on the poles and zeros of OLTF

VARIABLES:
AA : REAL*4
BB : REAL*4
CC : REAL*4
DD : REAL*4
DEBUG : LOGICAL
EAST : INTEGER
HEIGHT : REAL*4
I : INTEGER
LENGTH : REAL*4
NOLP : INTEGER
NOLZ : INTEGER
OLPOLE : MATRIX [50,2] OF REAL*4
OLZERO : MATRIX [50,2] OF REAL*4
SOUTH : INTEGER
WEST : INTEGER

PROCEDURE: FORM

LANGUAGE: VAX/VMS Pascal

DESCRIPTION: Forms OLTF or CLTF depending upon
user's choice.

CALLING PARAMETERS:
VAR COMMANDBUPFER : BUFFER
BUFFERPOINTER : INTEGER
VAR RESOLVED a BOOLEAN

B-8

DATA DICTIONARY

PROCEDURE: GRAPHICS

LANGUAGE: VAX/VMS Pascal

DESCRIPTION: Places the terminal in the graphics *)
mode so that the Special Graphics Characters in *)
Table 3-9 of the VT100 User Guide can be used. *)

APPLICATION: VT100 Terminal

PROCEDURE: HELP

LANGUAGE: VAX/VMS Pascal

DESCRIPTION: Looks for a legal object of the
command word HELP and takes appropriate
action. }

CALLING PARAMETERS:
VAR COMMANDBUFFER : BUFFER
VAR BUFFERPOINTER : INTEGER
VAR RESOLVED : BOOLEAN

(* VARIABLES:
COMMANDWORD : STRING
TCOMMANDWORD : STRING *

PROCEDURE: HELP_COPY

LANGUAGE: VAX/VMS Pascal

DESCRIPTION: Explains how to use the COPY
command.

APPLICATION: VT100 Terminal

B- 9

DATA DICTIONARY

PROCEDURE: HELP_INITIAL

LANGUAGE: VAX/VMS Pascal

DESCRIPTION: Displays all valid Command Words
that can be used to start a Command String.

PROCEDURE: HELP_PROMPT

LANGUAGE: VAX/VMS Pascal

DESCRIPTION: Displays all valid Command Words
that can be used to start a Command String.

PROCEDURE: HELP_SYSTEM

LANGUAGE: VAX/VMS Pascal

DESCRIPTION: Displays all valid ICECAP command
words in alphabetical order.

PROCEDURE: HIGHLIGHT

LANGUAGE: VAX/VMS Pascal

DESCRIPTION: Puts all subsequent characters into *)
reverse video until NOHIGHLIGHT is called.

APPLICATION: VT100 Terminal

B-10

DATA DICTIONARY

4

PROGRAM: ICER

FILENAME: ICER.PAS *

LANGUAGE: VAX/VMS Pascal and FORTRAN

DESCRIPTION: ICECAP - Interactive Control
Engineering Computer Analysis Package

APPLICATION: VT100 Terminal

DATE OF REVISION: 16 AUG 82

AUTHOR: Major Charles J. Gembarowski

CONSTANTS:
BUFFERSIZE = 10
COMMANDSIZE = 80

WORDSIZE = 12

TYPES:
BIGSTRING = PACKED ARRAY[I..COMMANDSIZEJ OF CHAR *)STRING = PACKED ARRAY[l..WORDSIZE] OF CHAR

BUFFER = ARRAY[I..BUFFERSIZE] OF STRING

VARIABLES:
BUFFERPOINTER : INTEGER
CLC : INTEGER
COMMAND : ARRAY[1..COMMANDSIZE] OF CHAR
COMMANDBUFFER : BUFFER
COMMANDWORD : STRING
CONTINUE : CHAR
HEADER : BOOLEAN
I : INTEGER
ICOMMAND : BIGSTRING
KEYWORD : STRING
LETTER : CHAR
LINE : BIGSTRING
OPTIONNUMBER : INTEGER
PRINTFLAG : BOOLEAN
RESOLVED : BOOLEAN
STATUS : INTEGER
TCOMMANDWORD : STRING
UCOMMAND : BIGSTRING
WLC % INTEGER
WORD : ARRAY[1..WORDSIZE] OF CHAR

B-11

94A

DATA DICTIONARY

PROCEDURE: INTERPRET

LANGUAGE: VAX/VMS Pascal

DESCRIPTION: Reads command words out of the
command buffer and calls appropriate procedures *)
for action.

CALLING PARAMETERS:
VAR COMMANDBUFFER : BUFFER
VAR BUFFERPOINTER : INTEGER
VAR RESOLVED : BOOLEAN
VAR PRINTFLAG : BOOLEAN

VARIABLES:
ALLMATCH : BOOLEAN
COMMANDWORD : STRING
OUTCOMMAND : BIGSTRING
TCOMMANDWORD : STRING
OPTIONNUMBER : INTEGER

PROCEDURE: LOCUS

LANGUAGE: VAX/VMS Pascal

DESCRIPTION: Displays, prints or plot the Root
Locus for the OLTF which must be already defined. *)

APPLICATION: VTl00 Terminal

CALLING PARAMETERS:
VAR COMMANDBUFFER : BUFFER
BUFFERPOINTER : INTEGER
VAR RESOLVED : BOOLEAN

B-12
4.

DATA DICTIONARY

PROCEDURE: LOCUS_AUTOSCALE

LANGUAGE: VAX/VMS Pascal

DESCRIPTION: Displays, prints or plot the Root
Locus for the OLTF which must be already defined. *)
Chooses the borders based on the locations of
poles and zeroes.

APPLICATION: VT100 Terminal

PROCEDURE: LOCUS_MAGNIFY

LANGUAGE: VAX/VMS Pascal

(* DESCRIPTION: Displays, prints or plot the Root
Locus for the OLTF which must be already defined. *)
Doubles the size of the locus from the last time *)

(* it was shown.

APPLICATION: VTI00 Terminal

PROCEDURE: LOCUSSHRINK

LANGUAGE: VAX/VMS Pascal

DESCRIPTION: Displays, prints or plot the Root
Locus for the OLTF which must be already defined. *)
Shrinks the size of the locus by a factor of 2.

APPLICATION: VT100 Terminal

B-13

DATA DICTIONARY

PROCEDURE: LOCUS_ZOOM

LANGUAGE: VAX/VMS Pascal

DESCRIPTION: Displays, prints or plot the Root
Locus for the OLT? which must be already defined. *)
User chooses center point and the horizontal
distance to the border

APPLICATION: VT100 Terminal

SUBROUTINE: MAGNIFY

FILENAME: MAGNIFY.ICE

LANGUAGE: VAX/VMS FORTRAN

DESCRIPTION: Magnifies the Root Locus by finding *)
new borders for the Root Locus plot. Does this *)
by dividing the present values of AA, BB, CC,
and DD by two.

VARIABLES:
AA : REAL*4
BB : REAL*4
CC : REAL*4
DD : REAL*4

B-14

DATA DICTIONARY

PROCEDURE: NOGRAPHICS

LANGUAGE: VAX/VMS Pascal

DESCRIPTION: Takes the VT100 terminal out of the *)
graphics mode. Restores the lowercase character *)
set.

APPLICATION: VT100 Terminal

PROCEDURE: NOHIGHLIGHT

LANGUAGE: VAX/VMS Pascal

DESCRIPTION: Puts all subsequent characters into *)
normal video.

APPLICATION: VTl00 Terminal

PROCEDURE: PACK_BUFFER

LANGUAGE: VAX/VMS Pascal

DESCRIPTION: Takes the COMMNDBUFFER and packs
it into OUTCOMMAND which will go to TOTAL.

CALLING PARAMETERS:
COMMANDBUFFER : BUFFER
VAR OUTCOMMAND : BIGSTRING
COMMANDLEVEL : INTEGER

VARIABLES:
I : INTEGER
J : INTEGER
OUTARRAY : ARRAY[I..COMMANDSIZE] OF CHAR
TEMP : ARRAY[1..WORDSIZE] OF CHAR

B-15

DATA DICTIONARY

PROCEDURE: PAUSE

LANGUAGE: VAX/VMS Pascal

DESCRIPTION: Causes program to halt until
<RETURN> is pressed, thereby allowing the user *)
time to read the screen.

APPLICATION: VT100 Terminal

VARIABLES:
CONTINUE : CHAR

PROCEDURE: PRINT_BUFFER

LANGUAGE: VAX/VMS Pascal *

DESCRIPTION: Prints out entire command buffer
with no leading blanks, one trailing blank, no
abbreviations, and with one space between words. *)
Words are in upppercase.

CALLING PARAMETERS:
COMMANDBUFFER: BUFFER
BUFFERPOINTER : INTEGER(* *1

VARIABLES:
TCOMMANDWORD : STRING

B-16

DATA DICTIONARY

PROCEDURE: READCOM

LANGUAGE: VAX/VMS Pascal

DESCRIPTION: Reads in ICOI4MAND (until <CR>),
changes it to uppercase (UCOMMAND), breaks it
into command words, and puts the command words *
into COMMANDEUFFER.

CALLING PARAMETERS:
VAR COMMANDBUFFER : BUF~FER
VAR BUFFERPOINTER : INTEGER

VARIABLES:
COMMANDWOED :STRING
TCOMMANDWORD :STRING

FUNCTION: STR$UPCASE

DESCRIPTION: Puts all letters into uppercase

CALLING PARAMETERS:
%STDESCR UCOMMAND : BIGSTRING
%STDESCR ICOMMAND : BIGSTRING

B-17

DATA DICTIONARY

SUBROUTINE: SHRINK

FILENAME: SHRINK.ICE

LANGUAGE: VAX/VMS FORTRAN

DESCRIPTION: Shrinks the Root Locus by finding
new borders for the Root Locus plot. Does this *)
by multiplying the present values of AA, BB,
CC, and DD by two.

APPLICATION: VT100 Terminal

VARIABLES:
AA : REAL*4
BB : REAL*4
CC : REAL*4
DD : REAL*4

PROCEDURE: TITLE_SLIDE

LANGUAGE: VAX/VMS Pascal

DESCRIPTION: Displays initial screen showing
ICECAP in large letters and copyright information. *)

APPLICATION: VT100 Terminal

B-18

DATA DICTIONARY

SUBROUTINE: TOTICE

FILENAME: TOTICE.ICE

LANGUAGE: VAX/VMS FORTRAN

DESCRIPTION: Interfaces the Pascal portion of
ICECAP with the FORTRAN portion by passing
the option numbers and commands sent to it by
the Pascal portion to the FORTRAN portion.

CALLING PARAMETERS:
OPTIONNUMBER : INTEGER
%STDESCR LINE : PACKED ARRAY[INTEGER] OF CHAR

VARIABLES:
DATM : MATRIX (100] OF REAL*4
DEBUG : LOGICAL
GOPLOT : LOGICAL
I : INTEGER
IPLOT : INTEGERJFLAG : MATRIX (1001 OF INTEGER)

LASTOPT : INTEGER
LINE : STRING [80] OF CHAR
LOPT : INTEGER
MCOMM : MATRIX [100] OF INTEGER
MPT : INTEGER
NNU : INTEGER
NOPT : INTEGER
NROUTE : MATRIX [10] OF INTEGER
NRPT : INTEGER

OPTN : INTEGER
REQUEST : LOGICAL

B-19

DATA DICTIONARY

SUBROUTINE: TOTINI

FILENAME: TOTINI.ICE

LANGUAGE: VAX/VMS FORTRAN

DESCRIPTION: Initializes the FORTRAN modules in *)
ICECAP as part of the ICECAP initialization
process.

VARIABLES:
ALREADY : LOGICAL
ANSWER : LOGICAL
CALC : LOGICAL
CLNPOLY : MATRIX [51] OF REAL*4

CLOSED : LOGICAL
DEBUG : LOGICAL
DECIBEL : LOGICAL
DEGREE : LOGICAL
DMAT : MATRIX [10,10] OF REAL*4
ECHO : LOGICAL
EXTCALC : LOGICAL
FILOPN : LOGICAL
GRID : LOGICAL
HERTZ : LOGICAL
INMASS : MATRIX [47] OF INTEGER
KFLAG : MATRIX [20] OF INTEGER
LFLAGE : MATRIX [20] OF INTEGER
NCALL : MATRIX [20] OF INTEGER
NGO : INTEGER

S(*PLAT : LOGICAL
REQUEST : LOGICAL
SCALE : LOGICAL
TEKPLOT : LOGICAL
TEST : LOGICAL

B-20

DATA DICTIONARY

PROCEDURE: TRIM

LANGUAGE: VAX/VMS Pascal

DESCRIPTION: Trims the trailing blanks off of
the SOURCE string and places the stripped
version into the DESTINATION string.

CALLING PARAMETERS:
VAR SOURCE : STRING
VAR DESTINATION : STRING

VARIABLES:
I : INTEGER
UDESTINATION : ARRAY[1..WORDSIZE] OF CHAR
USOURCE : ARRAY[1..WORDSIZE] OF CHAR

PROCEDURE: TURN

LANGUAGE: VAX/VMS Pascal

DESCRIPTION: Used to turn the various control
switches ON and OFF.

CALLING PARAMETERS:
VAR COMMANDBUFFER : BUFFER
VAR BUFFERPOINTER : INTEGER
VAR RESOLVED : BOOLEAN

VARIABLES:
COMMANDWORD : STRING
TCOMMANDWORD : STRING

B-21

.

DATA DICTIONARY

PROCEDURE: TURN_PROMPT

LANGUAGE: VAX/VMS Pascal

DESCRIPTION: In the absence of an object for
TURN, it prompts for one.

CALLING PARAMETERS:
VAR COMMANDBUFFER : BUFFER
VAR BUFFERPOINTER : INTEGER
VAR RESOLVED : BOOLEAN

PROCEDURE: TURN_X

LANGUAGE: VAX/VMS Pascal

DESCRIPTION: Processes the object of TURN by
looking for OFF or ON and sets the switch
accordingly.

CALLING PARAMETERS:
VAR COMMANDBUFFER : BUFFER
VAR BUFFERPOINTER : INTEGER
VAR RESOLVED : BOOLEAN
VAR HEADER : BOOLEAN

VARIABLES:
OPTIONNUMBER : INTEGER
OUTCOMMAND : BIGSTRING
TCOMMANDWORD : STRING

B-22

r .,.,. NN,,.. n , ,, . .W.... . ..E "* " -... - -

DATA DICTIONARY

BA4 DATA DICTIONARY BLANK FORM

A blank data dictionary entry form is included below

and may be reproduced as necessary for adding new items to

the data dictionary.

PROCEDURE:_____________ ____

LANGUAGE: VAX/VMS_____ ________

DESCRIPTION: __________________

APPLICATION: VT100 Terminal

CALLING PARAMETERS:

VARIABLES:

B-23

DATA DICTIONARY

B. 5 SUMMARY

The data dictionary for the program, procedures,

functions, and subroutines of ICECAP has been provided along

with a blank dictionary entry form for use in further

documenting the ICECAP as it develops through subsequent

thesis efforts. Dictionary type information on the ICECAP

variables can be found in the ICECAP source listing.

B-24

APPENDIX C

PROBLEM REPORTS

C.1 INTRODUCTION

This appendix documents the problem reports generated

as a result of having analyzed and executed TOTAL, VAXTOTAL,

and ICECAP. These problem reports can serve as a basis for

future development of ICECAP. A blank problem report form

has been included. This form can be reproduced as necessary

so that a continuous record of program problems and their

corrections can be maintained.

C.2 PROBLEM REPORTS

The following pages contain the problem reports that

have been accumulated to date. There is one report per

page.

C-1

PROBLEM REPORTS

PROBLEM REPORT NUMBER: 1

DATE: 1 JUL 82

ORIGINATOR: Major Charles J. Gembarowski

PROBLEM NAME: DEL

PROGRAM(S) HAVING PROBLEM: TOTAL, VAXTOTAL, ICECAP

PROBLEM DESCRIPTION: Option 49 resets DEL and DELPR to zero
after printing out their value. Cause is Subroutine ROOT10,
lines 0181 and 0182. Result is that the Root Locus Options
bomb out.

PROBLEM SERIOUSNESS: Very

DIFFICULTY OF FIX: Easy

SUGGESTIONS FOR FIX: Avoid that section of code by
inserting the following line of code: "IF NOPT N.EQ.49
THENO.

DISPOSITION: Fix is implemented and has been tested in
ICECAP.

C-

C-2

PROBLEM REPORTS

PROBLEM REPORT NUMBER: 2

DATE: 23 JUN 82

ORIGINATOR: Major Charles J. Gembarowski

PROBLEM NAME: Output

PROGRAM(S) HAVING PROBLEM: TOTAL, VAXTOTAL, ICECAP

PROBLEM DESCRIPTION: When writing output to the ANSWER.DAT
file, the user does not see what is being written.

PROBLEM SERIOUSNESS: Major inconvenience

DIFFICULTY OF FIX: Medium

SUGGESTIONS FOR FIX: Write the same information to the
screen and to the file in sequence so that user can see what
is being written.

DISPOSITION: This technique has been implemented and tested
in ICECAP.

c-3

PROBLEM REPORTS

PROBLEM REPORT NUMBER: 3

DATE: 3 JUN 82

ORIGINATOR: Major Charles J. Gembarowski

PROBLEM NAME: Root Locus Scaling

PROGRAM(S) HAVING PROBLEM: TOTAL, VAXTOTAL, ICECAP

PROBLEM DESCRIPTION: User should nut have to figure out the
values to assign to AA, BB, CC, and DD in order to establish
reasonable scales for a Root Locus plot. Default values are
not adequate.

PROBLEM SERIOUSNESS: Major inconvenience

DIFFICULTY OF FIX: Medium

SUGGESTIONS FOR FIX: Implement autoscaling based on the
locations of the poles and zeroes of the Open Loop Transfer
Function. Show only the top half of the Root Locus (with
only a small portion of the bottom half for context) since
the bottom half of the Root Locus is a mirror image of the
top half. Allow the user to magnify and shrink the Root
Locus as desired as well as zoom about a chosen point.

DISPOSITION: Autoscaling, magnification, and shrinking has
been implemented and tested in ICECAP. The structure and
command language of ICECAP is ready for the implementation
of the zoom feature.

C-4

b ;

PROBLEM REPORTS

PROBLEM REPORT NUMBER: 4

DATE: 18 JUL 82

ORIGINATOR: Major Charles J. Gembarowski

PROBLEM NAME: Precision

5ROGRAM(S) HAVING PROBLEM: VAXTOTAL, ICECAP

PROBLEM DESCRIPTION: The fact that the VAX is less precise
than the Cyber could cause calculation errors, such as
divide by zero, and wrong decisions.

PROBLEM SERIOUSNESS: Unknown

DIFFICULTY OF FIX: Massive

SUGGESTIONS FOR FIX: Fix occurrences as they happen and as
they are understood. Methodically replace some of the
cruder algorithms of TOTAL with more numerically precise
algorithms.

DISPOSITION: Continuous effort. However, PI, the variable
representing the transcendental number pi, has been made
more precise in ICECAP to make the angle calculations more
reliable particularly in the root locus options.

C-5

PROBLEM REPORTS

PROBLEM REPORT NUMBER: 5

DATE: 25 JUL 82

ORIGINATOR: Major Charles J. Gembarowski

PROBLEM NAME: Root-finder

PROGRAM(S) HAVING PROBLEM: TOTAL, VAXTOTAL, ICECAP

PROBLEM DESCRIPTION: The programs are oftentimes unable to
find the roots of polynomials properly, particularly when
there are multiple roots involved. Several different
root-finders are implemented in the programs but the user
does not know when and why to select from among them.

PROBLEM SERIOUSNESS: Very

DIFFICULTY OF FIX: Medium

SUGGESTIONS FOR FIX: Strip out all of the present
root-finders and use one good one.

DISPOSITION: All of the root-finders have been stripped out
of ICECAP and replaced with a library routine ZRPOLY that
uses the Jenkins-Traub method. This fix has been tested and
the results are satisfactory.

C-6

PROBLEM REPORTS

PROBLEM REPORT NUMBER: 6

DATE: 21 JUL 82

ORIGINATOR: Captain Glen T. Logan

PROBLEM NAME: Initialization Via Data Statements

PROGRAM(S) HAVING PROBLEM: VAXTOTAL, ICECAP

PROBLEM DESCRIPTION: The programs use data statements to
initialize variables. This is a carryover from the overlay
structure of TOTAL. The result is that some variables that
are supposed to be reinitialized never get reinitialized
because the data statements are read only once during
program execution.

PROBLEM SERIOUSNESS: Very

DIFFICULTY OF FIX: Medium

SUGGESTIONS FOR FIX: Find all occurrences and initialize
the variables in question via a set statement.

DISPOSITION: All known occurrences have been fixed in
VAXTOTAL and ICECAP. However, this PR is left open until
all occurrences can be found and fixed.

C-7

I-

PROBLEM REPORTS

PROBLEM REPORT NUMBER: 7

DATE: 15 JUN 82

ORIGINATOR: Captain Roslyn J. Taylor

PROBLEM NAME: Use of Lower Case for Terminal Input

PROGRAM(S) HAVING PROBLEM: TOTAL, VAXTOTAL, ICECAP

PROBLEM DESCRIPTION: Programs do not accept lower case
input.

PROBLEM SERIOUSNESS: Minor inconvenience

DIFFICULTY OF FIX: Medium

SUGGESTIONS FOR FIX: Make the Pascal portion of ICECAP
allow lower, upper, and mixed case for input.

DISPOSITION: Pascal portion of ICECAP allows the use of any
case for input, however, until ICECAP is fully implemented,
there are portions of the FORTRAN modules in ICECAP that
still require upper case for input. This PR should stay
open until ICECAP is fully implemented or until the FORTRAN
modules are changed to allow the use of any case input.

[!

c-a

PROBLEM REPORTS
S.

PROBLEM REPORT NUMBER: 8

DATE: 15 JUN 82

ORIGINATOR: Major Charles J. Gembarowski

PROBLEM NAME: The FORM Command

PROGRAM(S) HAVING PROBLEM: ICECAP

PROBLEM DESCRIPTION: The FORM command is unlike the other
commands in ICECAP in that if it is incomplete the user must
retype the entire command. The other ICECAP commands allow
the user to continue typing an incomplete command.

PROBLEM SERIOUSNESS: Minor inconvenience

DIFFICULTY OF FIX: Medium

SUGGESTIONS FOR FIX: Implement command continuation in the
same manner as the other ICECAP commands.

DISPOSITION: Still open because no attempt has been made to
implement the command continuation feature.

C-9

b

PROBLEM REPORTS
4.

PROBLEM REPORT NUMBER: 9

DATE: 15 AUG 82

ORIGINATOR: Major Charles J. Gembarowski

PROBLEM NAME: ICECAP Logo

PROGRAM(S) HAVING PROBLEM: ICECAP

PROBLEM DESCRIPTION: ICECAP uses a checkerboard character
as a building block to form the large ICECAP logo. The
checkboard character does not stand out as much as a solid
character.

PROBLEM SERIOUSNESS: Minor

DIFFICULTY OF FIX: Easy but tedious

SUGGESTIONS FOR FIX: Replace the checkboard character with
the space in inverse video. This requires turning inverse
video on and off.

DISPOSITION: Partially implemented. Fix can be patched
into the latest version of ICECAP when complete. Fix as
time permits.

C-10

PROBLEM REPORTS
4

PROBLEM REPORT NUMBER: 10

DATE: 25 AUG 82

ORIGINATOR: Major Charles J. Gembarowski

PROBLEM NAME: Error Recovery

PROGRAM(S) HAVING PROBLEM: ICECAP

PROBLEM DESCRIPTION: Program presently requires that, in
case of error, the entire command must be retyped from the
beginning.

PROBLEM SERIOUSNESS: Medium inconvenience

DIFFICULTY OF FIX: Unknown, but not expected to be easy

SUGGESTIONS FOR FIX: Unknown, except that some scheme to
keep that portion of the command that is correct in the
command buffer and continue the command input process from
the point of last corrct entry.

DISPOSITION: Still open because there has been no ai-tempt
to implement an error recovery feature.

C-11

PROBLEM REPORTS

C.3 BLANK PROBLEM REPORT FORM

PROBLEM REPORT NUMBER:

DATE:

ORIGINATOR:

PROBLEM NAME: _

PROGRAM(S) HAVING PROBLEM:

PROBLEM DESCRIPTION:

PROBLEM SERIOUSNESS:

DIFFICULTY OF FIX:

SUGGESTIONS FOR FIX:

DISPOSITION:

C-12

......

PROBLEM REPORTS4,

C4 SUMMARY

A set of problem reports has been presented. Most of the

problems contained herein have already been corrected and

the fix has been implemented in ICECAP. This appendix is

meant to be the start of a continuous effort to document

problems with ICECAP.

Ci

c-i 3

APPENDIX D

COMPUTER AIDED DESIGN PACKAGES FOR CONTROL

D.1 INTRODUCTION

This appendix provides a synop sis of representative

computer-aided design programs studied during this

investigation.

D.2 PROGRAM SYNOPSES

ADAPT
BL Z
WPAS S
CADS
CAL ICO
CESA
DEL IGHT-NINO
DIGIKON
FORTRAC
DONEY-X
I-G SPICE
INTERAC
LPASS
LSAP
MATRIXx
SOFE
SUPER- SCEPTRE
TOTAL
VAXTOTAL

D-1

COMPUTER AIDED DESIGN PACKAGES FOR CONTROL

PROGRAM NAME: ADAPT -- Recursive Digital Filters (Kalman
Filters)

DESCRIPTION: Reads desired filter parameters (SIGMA, M
and Q), generates an initial S (covariance) matrix, T
matrix, and W (weight) matrix. The S and W matrices are
used to initialize the S and W matrices, respectively.
Next, 101 sample points provided by the user are read as
input to the Kalman filter. ADAPT tabulates the sample
number filter input, filter output, error signal, and
Kalman gain.

LANGUAGE: DEC FORTRAN

HOST COMPUTER: PDP-11/20

REFERENCE: [4: 117]

PROGRAM NAME: BLZ -- Bilinear Z-transform

DESCRIPTION: An interactive digital filter design program
that calculates digital transfer function coefficients
and magnitude function, applies a bilinear
transformation with pre-warping to obtain realizable
stable digital filters. Consists of a main program and 4
subroutines for pre-warping.

LANGUAGE: DEC FORTRAN

HOST COMPUTER: PDP-11/20

REFERENCE: [4: 81]

D-2

COMPUTER AIDED DESIGN PACKAGES FOR CONTROL
4

PROGRAM NAME: BPASS -- Band Pass Filter Design

DESCRIPTION: Designs maximally flat Butterworth or
Chebychev filter with equal ripple in pass band (band
pass or band stop). Generates digital filter
coefficients for up to six second order sections in
cascade (12th order). Must be called as a subroutine
from the main program.

LANGUAGE: FORTRAN IV

HOST COMPUTER: PDP-11/20

REFERENCE: [4: 1531

PROGRAM NAME: CADS -- Computer Automated Design of Systems

DESCRIPTION: Simulates and optimizes control systems and
circuits. Control system is defined in block diagram
form (transfer functions). The transfer functions are
reduced to first order differential equations. The
unknown or adjustable parameters are set by a
minimization routine to acheive the desired reponse.
Batch (cards) input.

LANGUAGE: FORTRAN IV

HOST COMPUTER:

REFERENCE: [4: 821

D-3

COMPUTER AIDED DESIGN PACKAGES FOR CONTROL

PROGRAM NAME: CALICO -- Computer Aided Linear Time-
Invariant Compensator Optimization Program

DESCRIPTION: For design of compensators to acheive
desired response in accordance with selected cost
function. Batch (cards) input. Four major parts
including subroutines -- 180 K words (210 K with
plotting routines)

LANGUAGE: FORTRAN IV

HOST COMPUTER: IBM 360-67

REFERENCE: [42: 32]

PROGRAM NAME: CESA -- Complete Eigenstructure Assignment
Program

DESCRIPTION: An interactive program to design a state
space control law for multi-input, multi-output systems.
Includes regulator, disturbance rejector, and tracker
design capabilities.

LANGUAGE: FORTRAN IV

HOST COMPUTER: CDC CYBER

REFERENCES: [361

D-4

COMPUTER AIDED DESIGN PACKAGES FOR CONTROL

PROGRAM NAME: DELIGHT-MIMO (in development)

DESCRIPTION: A highly interactive system for optimization
based design of multivariable control systems. Uses
color graphics and graphics tablet system intercon-
nections. Employs highly sophisticated semi-infinite
optimization algortihms.

LANGUAGE: FORTRAN 77

HOST COMPUTER: VAX 11/780

REFERENCE: [53]

PROGRAM NAME: DIGIKON

DESCRIPTION: Batch and interactive packages for analysis
of single-input/single-output control systems. Intended
mainly for industrial use. Used for multi-rate digital
design. Does root locus, eigenvalue and eigenvector
analyses. Packages are designed for both continuous
and discrete systems.

LANGUAGE: FORTRAN IV

HOST COMPUTER: IBM 360/370, CDC 6600, Honeywell 66

REFERENCE: [31]

D-5

.... -- a

COMPUTER AIDED DESIGN PACKAGES FOR CONTROL

PROGRAM NAME: FORTRAC

DESCRIPTION: For the design of multivariable digital
control systems. Can design a discrete control law, can
design an observer, and can run a simulation of the
system for the resulting controller. Takes the
continuous time description of a linear system and
synthesizes a control law for discrete-time-optimal
regulators? disturbance rejectors, and trackers.

LANGUAGE: FORTRAN

HOST COMPUTER: CDC 6600/CYBER-74

REFERENCE: [5]

PROGRAM NAME: HONEY-X

DESCRIPTION: Interactive package for control system
analysis and design intended for research and develop-
ment applications. Handles multiple-input/multiple-
output systems. Does matrix manipulation and Nichols
and Nyquist analyses. Finds the time history response
of a control system. Handles Kalman filtering and
optimal control.

LANGUAGE: FORTRAN 77

HOST COMPUTER: Honeywell 66 (under MULTICS)

REFERENCE: [31]

D-6

COMPUTER AIDED DESIGN PACKAGES FOR CONTROL

PROGRAM NAME: I-G SPICE

DESCRIPTION: Interactive graphics version of the SPICE2
program. SPICE2 is a circuit analysis program
featuring AC analysis, transient analysis, DC, noise,
sensitivity, driving point impedance, Fourier,
temperature, distortion, transfer characteristics, and
transmission analysis.

LANGUAGE: FORTRAN

HOST COMPUTER: VAX, PRIME, IBM maxi's, CDC maxi's

REFERENCE: AB Associates Announcement

PROGRAM NAME: INTERAC -- An Interactive Software Package
for Direct Digital Control Design

DESCRIPTION: Synthesizes a discrete multi-variable
feedback gain matrix to control a multi-input, multi-
output continuous control system. Three types of design
problems are solved: regulator, disturbance rejector,
and tracker.

LANGUAGE: FORTRAN IV

HOST COMPUTER: CDC CYBER

REFERENCE: [5]

D-7

COMPUTER AIDED DESIGN PACKAGES FOR CONTROL

PROGRAM NAME: LPASS -- Low Pass Filter Design

DESCRIPTION: Designs maximally flat Butterworth or
equiripple Chebychev low pass filter. First analog
filter is specified, then transformed with bilinear
Z-transform to yield the equivalent digital filter.
Interactive or batch. Must be called as a subroutine
from main program.

LANGUAGE: FORTRAN IV

HOST COMPUTER: PDP-11/20

REFERENCE: [4: 127]

PROGRAM NAME: LSAP -- Linear Systems Analysis Program

DESCRIPTION: An interactive program with graphics
capability used for analysis and design of linear
control systems. Classical design tools: transfer
function manipulation, root locus analysis, frequency
response, time response. Analyzes both continuous and
sampled data systems. 32K overlay structure.

LANGUAGE: Pascal

HOST COMPUTER: PDP-II/45, RSX-11M operating system

REFERENCE: [32]

I

D-8

COMPUTER AIDED DESIGN PACKAGES FOR CONTROL'V

PROGRAM NAME: MATRIXx

DESCRIPTION: A data analysis, systems identification,
control design and simulation package. It is an inter-
active software system for computer-aided design and
analysis of control systems for dynamic plants. Handles
multiple-input/multiple-output systems. Has command
interpreter. Solves Riccati equations. Uses state-of-
the-art algorithms for linear system analysis, differ-
ential equation solution and Fourier trasformation.

LANGUAGE: ANSI FORTRAN 77

HOST COMPUTER: VAX 11/780, planned for IBM 3033, CDC

REFERENCE: (63]

PROGRAM NAME: SOFE -- A Generalized Digital Simulation for
Optimal Filter Evaluation

DESCRIPTION: Helps to design and evaluate Kalman filters
for integrated systems. SOFE is a Monte Carlo
simulation that can be used for system performance
analysis once the Kalman filter is designed and
verified. A companion post-processor program, SOFEPL,
is used for doing ensemble averaging across runs and for
making pen plots. Uses batch.

LANGUAGE: 166 ANSI FORTRAN

HOST COMPUTER: CDC CYBER-74

REFERENCE: [49, 50]

D-9

COMPUTER AIDED DESIGN PACKAGES FOR CONTROL

PROGRAM NAME: SUPER-SCEPTRE

DESCRIPTION: Analyzes electronic circuits, mechanical
systems, logic, transfer functions, and guidance and
control systems.

LANGUAGE: FORTRAN

HOST COMPUTER: VAX, PRIME, IBM maxi's, CDC maxi's

REFERENCE: AB Associates announcement

PROGRAM NAME: TOTAL -- Interactive Computer Aided Design
Yrogram for Digital and Continuous Control System
Analysis and Synthesis

DESCRIPTION: An interactive computer aided design program
for continuous and discrete control systems. Classical
tools: Block diagram manipulation, root locus analysis,
frequency response, time response. Modern Techniques:
Matrix manipulation and state-space analysis.
Continuous to discrete transformations: impluse
invariance, Tustin approximation, first difference
approximation. 65K over-lay structure (1 main, 19
primary, 25 secondary) -- total of 600,000 (octal).

LANGUAGE: FORTRAN IV / FORTRAN-77

HOST COMPUTER: CDC CYBER

REFERENCE: [39, 40]

D-10

COMPUTER AIDED DESIGN PACKAGES FOR CONTROL
4A.

PROGRAM NAME: VAXTOTAL

DESCRIPTION: The implementation of TOTAL (cf.) on the

VAX 11/780. Interactive mode of operation at 9600 baud.

LANGUAGE: DEC FORTRAN-77

HOST COMPUTER: VAX-11/780

REFERENCE: [41]

4

COMPUTER AIDED DESIGN PACKAGES FOR CONTROL

D.3 SUMMARY

Several computer-aided control system design packages

have been synopsized. A brief description is given for each

along with an indication of the language used and of the

type of computers that host the various packages.

4-1

... .i, . ..I ;.. ... ,..i.. , , n .s, a ,'" -D -ll 2" " - ' -" - "" '

' C _ _ J"r'(
' I

APPENDIX E

COMMAND LANGUAGE DEFINITION

E.1 INTRODUCTION

This appendix presents the ICECAP command language

definitions in flow chart form. These definitions

unambiguously define the ICECAP command language.

Definitions are proviCd in alphabetical order. The

standards used to develop the command language diagrams are

also provided.

E.2 LIST OF COMMAND LANGUAGE DEFINITIONS

The following is a list of command language definitions

that are described in this appendix:

o COPY
o DEFINE
o DISPLAY
o FORK
o HELP
o PRINT
o TURN

E-1

COMMAND LANGUAGE DEFINITION
4 ,

E.3 COMMAND LANGUAGE DEFINITION STANDARDS

For the sake of clarity and uniformity the following

standards were used in developing the diagrams that portray

the command language definitions:

E.3.1 All diagrams are to be read from left to right.

E.3.2 Bracketed terms indicate choices. Only one choice

per bracket is allowed.

E.3.3 A lower case command word indicates that the feature

has not yet been implemented in the language.

E.3.4 The full spelling of each command word is used in

each case. It is understood that the abbreviations as

previously described are also valid.

E.3.5 It is understood that the carriage return and the

dollar sign are also valid choices at any point in the

diagram. The carriage return will cause the system to

prompt the user regarding the choices for the next word.

The dollar sign will abort the commmand.

E.3.6 It is understood that at least one blank must

separate the words in the command string.

E-2

COMMAND LANGUAGE DEFINITION

E.3.7 The blanks in some of the brackets are there only to

give the diagram balance.

3-3

COMMAND LANGUAGE DEFINITION

AMAT AMAT
BMAT BMAT
CMAT CMAT

COPY DMAT DMAT
FMAT FMAT
GMAT GM4AT
KNAT I(MAT{CLTF CLTF
GTF GTF

HTF HTF
.OLTF OLTF

Figure E-1. Command Language Definition for COPY

AMAT
DMAT
CMAT

DEFINE DMAT
FMAT
GMAT
K14AT
SETUP

rCLTF a~

DEIN GTF r FACT w
HTF POLY wrm

fOLT?) 1

(U Figure E-2, Command Language Definition for DEFINE

COMMAND LANGUAGE DEFINITION

A44A

AMAT

DISPLAY DMAT
FJ4AT
GMAT
K14AT

CLTF
GTF

OLTF

SPECS

rAUTOSCALE
DISPLAY LOCUS ANP

SHRINK
zoom

Figure E-3. Command Language Definition for DISPLAY

rOLT?
FORK CLTF USING GTF AND HTF

LCLTF USING OLTF

Figure B-4. Command Language Definition for FORM

B-5

COMMAND LANGUAGE DEFINITION

SYSTEM
INITIAL
teach

HELP COPY
define
print
display
turn

Figure E-5. Command Language Definition for HELP

AMAT
BMAT
CHAT

PRINT DMAT
PHAT
GMAT
KMAT

rCLTF
IGTF

PRINT HTF
OLTF
SPECS

rAUTOSCALE
JMAGNIFY

PRINT LOCUS
ISHRINK
zoom

Figure E-6. Command Language Definition for PRINT

COMMAND LANGUAGE DEFINITION

ANSWER
CANCEL
CAPTION
CLOSED
DEBUG
DECIBELS ON

TURN ECHO
GRID OFF
HERTZ
MAINMENU
MULT
PLOT
SCALE
TITLE

Figure E-7. Command Language Definition for TURN

E-7

E-7

1.

COMMAND LANGUAGE DEFINITION
I.o

E.4 SUMMARY

This appendix has provided an unambiguous definition of

the ICECAP command language in diagram form. The standards

which were used in developing the diagrams have teen

provided to help the reader understand the diagrams and to

serve as a guideline for others who will be extending the

language to add more commands.

C' -
3-

APPENDIX F

FORTRAN MODULE DESCRIPTIONS

Fol INTRODUCTION

This appendix gives descriptions of new FORTRAN modules

used in ICECAP and descriptions of the VAXTOTAL FORTRAN

modules that were revised so they could be used in ICECAP.

A complete source listing of these modules appears in

alphabetical order in Appendix G.

F.2 DESCRIPTION OF NEW FORTRAN MODULES

The following FORTRAN modules were developed as a

result of this thesis effort. These modules were coded in

FORTRAN as they are more closely related to the FORTRAN

portion of ICECAP than they are to the Pascal portion.

TOTICE is the interface module between Pascal portion of

ICECAP and the FORTRAN modules. Since most of its code was

derived from the mainline program of VAXTOTAL which is

written in FORTRAN, it made sense to leave the code in

FORTRAN.

F-1

FORTRAN MODULE DESCRIPTIONS

o FINDBORD - This module is used to establish the
borders for the plot of the root locus. The
location of the borders is calculated based on the
location of the poles and zeroes.

o MAGNIFY - This module is used to double the size of
the root locus as it appears on the plot. This is
done by dividing the location of each boundary by
two.

" SHRINK - This module is used to shrink the size of
the root locus as it appears on the plot by a
factor of two. This is done by multiplying the
location of each boundary by two.

o TOTICE - This module is the main interface between
the new ICECAP modules and the old VAXTOTAL
modules. ICECAP takes commands that have been
formulated by the user and translates them to
option numbers and commands that VAXTOTAL normally
processes. TOTICE passes these option numbers and
commands to the VAXTOTAL modules for action and
then returns control back to ICECAP.

o TOTINI - This module is the initialization module
for the VAXTOTAL modules that are used in ICECAP.

F.3 DESCRIPTION OF REVISED FORTRAN MODULES

The following is a list of the FORTRAN Modules that

have undergone major revision. A summary of the changes

made to each module is included. The modules are in

alphabetical order.

o ADAPT - FORTRAN output statements were reformatted
so as to be compatible with the appearance of the
Pascal generated output messages. Cursor controls
were added so that the cursor appears right after
the prompt for user data entry rather than on the
line following the prompt.

o ANGl - PI was made double precision.

o BANG - PI was made double precision.

F-2

FORTRAN MODULE DESCRIPTIONS
.4

o BLOCKER - FORTRAN output statements were
reformatted so as to be compatible with the
appearance of the Pascal generated output messages.

o BOX - PI was made double precision.

o COPYIER - FORTRAN output statements were
reformatted so as to be compatible with the
appearance of the Pascal generated output messages.
Page slewing was added for when the program prints
to the file ANSWER.DAT.

o DECODER - FORTRAN output statements were
reformatted so as to be compatible with the
appearance of the Pascal generated output messages.
Cursor controls were added so that the cursor
appears right after the prompt for user data entry
rather than on the line following the prompt.
References to filenames were changed to be
compatible with names used in VAX/VMS. Messages
refering to ANSWER flag being turned on and off
were suppressed.

o DMULR - Code was stripped out and replaced with a
call to ROOT which in turn calls library routine
ZRPOLY which uses the Jenkins-Traub method of
finding roots of polynomials.

o FACTO - Unnecessary declarations were commented out
of the code.

o FRACTOR - Code was stripped out and replaced with a
call to FACTO which in turn calls ROOT which in
turn calls library routine ZRPOLY which uses the
Jenkins-Traub method of finding roots of
polynomials.

o GANGl - PI was made double precision.

o PARTL - FORTRAN output statements were reformatted
so as to be compatible with the appearance of the
Pascal generated output messages. Cursor controls
were added so that the cursor appears right after
the prompt for user data entry rather than on the
line following the prompt.

o POLY - FORTRAN output statements were reformatted
so as to be compatible with the appearance of the
Pascal generated output messages. Cursor controls
were added so that the cursor appears right after
the prompt for user data entry rather than on the

. ...- _3'

FORTRAN MODULE DESCRIPTIONS

line following the prompt.

o READER - The parameter ICELINE was added to calling
statement. A statement to set the FORTRAN common
variable LINE equal to ICELINE was added.

o ROOT - Code was stripped out and replaced with
library routine ZRPOLY which uses the Jenkins-Traub
method of finding roots of polynomials.

o ROOTlO - PI was made double precision. A condition
on when to slew the page was added. The display of
AA, BB, CC, DD was supressed at the terminal. Code
to prevent VAXTOTAL Option 49 from erroneously
resetting VAXTOTAL variables DEL and DELPR was
added. This erroneous reset had caused problems in
finding the Root Locus.

o ROOT11 - FORTRAN output statements were reformatted
so as to be compatible with the appearance of the
Pascal generated output messages.

o ROOT12 - FORTRAN output statements were reformatted
so as to be compatible with the appearance of the
Pascal generated output messages.

o ROOT2 - This module was deleted since it is no
longer needed because ZRPOLY is being used instead
to find the roots of polynomials.

o SEEK - PI was made double precision.

o SMULR - Code was stripped out and replaced with a
call to ROOT which in turn calls library routine
ZRPOLY which uses the Jenkins-Traub method of
finding roots of polynomials.

o SPECS - FORTRAN output statements were reformatted
so as to be compatible with the appearance of the
Pascal generated output messages.

o SWAP - Cursor controls were added so that the
cursor appears right after the prompt for user data
entry rather than on the line following the prompt.

o SWAPER - FORTRAN output statements were reformatted
so as to be compatible with the appearance of the
Pascal generated output messages. Cursor controls
were added so that the cursor appears right after
the prompt for user data entry rather than on the
line following the prompt.

F-4

FORTRAN MODULE DESCRIPTIONS

o TTYPLOT - Cursor controls were added. Automatic
scaling for Root Locus plots was added. AA, BB,
CC, DD were changed to Right, Top, Left, Bottom
respectively.

o UPDATE - Code was added to force control to return
to ICECAP rather than to do a FORTRAN stop.

P4 SUMMARY

This appendix has provided descriptions of the new

FORTRAN modules being used in ICECAP and descriptions of the

VAXTOTAL FORTRAN modules that were revised so they could be

used in ICECAP. The next appendix gives a complete source

listing of these modules in alphabetical order.

F-5

VITA

Major Charles J. Gembarowski was born on 20 September

1944 in Brattleboro, Vermont. He graduated from Saint

Michael's High School in 1962. He received a Bachelor of

Arts Degree in Philosophy from Saint Mary's Seminary and

University in Baltimore, Maryland in 1966. He received a

Bachelor of Science Degree in Electrical Engineering and a

Bachelor of Arts Degree in Mathematics from Arizona State

University in 1974. Major Gembarowski was the Engineer for

the onboard central computer for the E-3A Airborne Warning

and Control System (AWACS) while assigned to Hanscom Air

Force Base, Massachusetts. His most recent assignment

before entering the School of Engineering of the Air Force

Institute of Technology was as a Program Manager for the

Modular Automatic Test Equipment (MATE) Program at

Wright-Patterson Air Force Base, Ohio. Major Gembarowski is

a member of Eta Kappa Nu and Tau Beta Pi. He is married to

Ruthmary and has two children, Charles and Christopher.

Permanent Address: Brattleboro Road
North Hinsdale,
New Hampshire 03451

I ..

SECURITY CLASS-FICATION OF THIS DkAGI (W'..al be E.tored)

REPOT DCUMNTATON AGEREAD INSTRUCTIONS
________REPORT _____ _________IONPAG BEFORE COMPLETING FORM

I. REPORT NL.MOER -GOVT ACCfrSSION NO. 3. PEClO'FFT*S CATALOG NUMBER

API T/Gz/t3/82D-34 ~ a ~I Y~i 70 ______

4. TTLE and ubtile)S. TYFE aF rEP.IT & PERIOD COVERED
DEVLORENTOF AN INTERACTI-VE CONTROL MS Thesis
ENGINEERING COMPUTMR ANALYSIS PACKAGE
(ICECAP) FOR DISCR"STE AND CONTINUOUS 6. PERFORMING ORG. REPORT NUMBER
SYSTEMSI

7. AUTNOR(a) 11 CONI PACT ORS GRANT NUMBER(s)

Charles J. Gembarowski

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10 PPCGPAM FLEMENT. PROJECT, TASK

Air Force Institute of Technology (AFIT/ENI APEA A WORK UNIT NUMBERS

Wright-Patterson APB, Ohio 45433

I I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Aeronautical Systems Division December 1982
Plh Control and Stability Branch (ASD/ '13. NUMBEP OW PAGES

ENFTO WrigR -Pattarson ATR, nhio 4S4-5' 171
14. MONITORING AGENCY NAME & ADDRESS(iI different from Controlling Office) 15. SECURITY CLASS. (of this report)

Unclassified
15a. DECLASSI FICATION/ DOWNGRADING

SCHEKDU LE

IS. DISTRIBUTION STATEMENT (of thise Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of Cho abetract entered in Block 20, it different from Report)

1.SUPPLEMENTARY NOTES

5k Force Insututs* 16e h"(A

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Command Language Control Systems
Computer Aided Design Discrete Time Systems
Computer Analysis Package Human Interface
Continuous Time Systems Interactive
Control Engineering VAX 111780

20. ABSTRACT (Contlinue an reverse eide If necesayand identify by block number)

See reverse

DD ~ 147 EDIIONOF INOV6 ISOS~ETE SECURITY CLASSIFICATION OF TNIS PAGE FIhen Dat0 enee)

UNCLASSIIED
SECUMILY CLASSIFICATION OF THIS PAGE(lWhen Dote Raaeed)

3 This thesis reports on an effort to design and implement
a modern interactive computer-aided design and analysis
package for control systems. This package applies to
discrete and continuous time systems. The thesis effort
continues the effort begun by Captain Glen T. Logan who
used a control engineering design and analysis computer
program called TOTAL as his starting point.-,

,-- This thesis project uses top-down structured analysis
and programming techniques to define the new program called
ICECAP (Interactive Control Engineering Computer Analysis
Package). A user-oriented command language forms the basic
structure of ICECAP. On-line assistance is provided to
the user. The program makes use of CRT (Cathode Ray Tube)
terminals with a limited graphics capability to improve the
user environment.-

'The program structure allows features to be added in a
modular fashion so that others can continue the effort.
Emphasis was placed on implementing the continuous time
functions first.

0

UNCLASSIFIED A
SECURITY CLASSIFICATION OF THIS PAGIR(Wheo Dae bgE e_______ -~--.--------

